-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathltr_algorithm.py
278 lines (241 loc) · 11.3 KB
/
ltr_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#encoding: utf8
import math
import sys
import os
import time
import numpy as np
import random
import tensorflow as tf
from metric import NDCG, PRECISION, MAP, MRR, IDCG, DCG_DIFF, score2rank
from read_samples import get_fold
from common import check_test, gen_score, save_test_score
class RankModel(object):
support_models = ["lambdarank", # 标准版 lambdarank
"ranknet", # 非按lambdarank方式加速版ranknet
"ranknet_speedup", # 按lambdarank方式加速版ranknet
"ranking_svm", # hinge loss 的 ranking svm
"log_loss_binary_classify", # log loss 的二分类
"mse_regression", # 差平方和loss 的回归方法
"lambdarank_slow", # 类似未加速的 ranknet 的 lanbdarank
]
def __init__(self, model_name, lr_rate, fea_num):
if model_name[0: 4] == "fea_":
self._fea_idx = int(model_name[4: ])
module_name = "fea"
else:
assert model_name in self.support_models
input_left = tf.placeholder(tf.float32, [None, fea_num])
input_right = tf.placeholder(tf.float32, [None, fea_num])
input_lw = tf.placeholder(tf.float32, [None])
if model_name != "rank_svm":
score_left, weight_vars = gen_score(input_left, hidden_layers=[10])
score_right, _ = gen_score(input_right, hidden_layers=[10], re_use=True)
if model_name == "ranknet":
final_logits = score_left - score_right
sigmoid = tf.nn.sigmoid(final_logits)
sigmoid = tf.reshape(sigmoid, [-1])
loss = -input_lw * tf.log(sigmoid) - (1.-input_lw) * tf.log(1-sigmoid)
loss = tf.reduce_mean(loss)
elif model_name == "lambdarank_slow":
final_logits = score_left - score_right
sigmoid = tf.nn.sigmoid(final_logits)
sigmoid = tf.reshape(sigmoid, [-1])
loss = -input_lw * tf.log(sigmoid)
loss = tf.reduce_mean(loss)
elif model_name == "log_loss_binary_classify":
final_logits = score_left
sigmoid = tf.nn.sigmoid(final_logits)
sigmoid = tf.reshape(sigmoid, [-1])
loss = -input_lw * tf.log(sigmoid) - (1.-input_lw) * tf.log(1-sigmoid)
loss = tf.reduce_mean(loss)
elif model_name == "mse_regression":
score_left1 = tf.reshape(score_left, [-1])
loss = (score_left1 - input_lw) ** 2
loss = tf.reduce_mean(loss)
elif model_name == "ranking_svm":
weight_decay = 0.0001
diff = input_left - input_right
d, weight_vars = gen_score(diff, re_use=False)
score_left, _ = gen_score(input_left, re_use=True)
# note: SVM 训练的时候一般是一次性训完,而不是batch方式。因此这里只算是近似而已。如果样本量少,可以batch-size=样本总量化解。
loss = tf.reduce_sum(tf.maximum(0., 1. - input_lw * d)) + weight_decay * tf.nn.l2_loss(weight_vars[0])
elif model_name in ["lambdarank", "ranknet_speedup"]:
score_left1 = tf.reshape(score_left, [-1])
loss = input_lw * score_left1
loss = tf.reduce_mean(loss)
elif module_name == "fea":
# 原始特征中某列作为rank score
weight_vars = [tf.Variable(1.0)]
loss = weight_vars[0]
score_left = tf.transpose(input_left)[self._fea_idx]
else:
raise Exception("module=%s not supported!" % (model_name))
#optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr_rate)
optimizer = tf.train.AdamOptimizer(learning_rate=lr_rate)
opt = optimizer.minimize(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
self.model_name = model_name
# model input:
self.input_left = input_left
self.input_right = input_right
self.input_lw = input_lw
# model rank score output
self.score_left = score_left
# model weights
self.weight_vars = weight_vars
# model loss
self.loss = loss
# model optimizer
self.opt = opt
# model session
self.sess = sess
def train(self, fea_left, fea_right, lw):
if self.model_name in ["ranknet", "ranking_svm", "lambdarank_slow"]:
assert fea_right is not None
assert lw is not None
_, ls = self.sess.run([self.opt, self.loss], feed_dict = {self.input_left: fea_left, \
self.input_right: fea_right, \
self.input_lw: lw})
else: # lambdarank, or ranknet_speedup, log_loss_binary_classify, mse_regression
assert lw is not None
_, ls = self.sess.run([self.opt, self.loss], feed_dict = {self.input_left: fea_left, \
self.input_lw: lw})
return ls
def infer(self, test_feas, feed_dict=None):
if not feed_dict:
feed_dict = {}
feed_dict[self.input_left] = test_feas
return model.sess.run(model.score_left, feed_dict=feed_dict)
def precess_train_data(train_data):
""" 对每个query下的doc,按label排序,并计算 IDCG """
sample_by_query = train_data[1]
for qid in sample_by_query:
sample_by_query[qid].append(IDCG(sample_by_query[qid][1]))
Len = len(sample_by_query[qid][0])
aa = [(sample_by_query[qid][1][i], i) for i in xrange(Len)]
bb = sorted(aa, key=lambda x: x[0], reverse=True)
idx = [x[1] for x in bb]
sample_by_query[qid][0] = [sample_by_query[qid][0][i] for i in idx]
sample_by_query[qid][1] = [sample_by_query[qid][1][i] for i in idx]
def get_samples(model, train_data, qids):
""" 对于给定的query ids, 生成训练样本 """
model_name = model.model_name
def calc_exp(s_i, s_j, aa=0):
if s_i > s_j:
return aa-math.exp(s_j - s_i) / (1 + math.exp(s_j - s_i))
else:
return aa-1 / (1 + math.exp(s_i - s_j))
sample_by_query = train_data[1]
s_left = []
s_right = []
s_lw = []
for qid in qids:
q_fea = sample_by_query[qid][0]
q_lable = sample_by_query[qid][1]
idcg = sample_by_query[qid][2]
if idcg == 0.:
continue
if model_name in ["ranknet_speedup", "lambdarank"]:
sc = model.infer(q_fea)
sc = [s[0] for s in sc]
rank = score2rank(sc)
for i in xrange(len(q_fea)):
lmd = 0.
for j in xrange(0, i, 1):
assert q_lable[i] <= q_lable[j]
if q_lable[i] == q_lable[j]:
continue
# j > i
if model_name == "lambdarank":
dcg_diff = DCG_DIFF(q_lable[i], q_lable[j], rank[i], rank[j]) / idcg
lmd -= calc_exp(sc[j], sc[i]) * dcg_diff
else: # ranknet speedup
lmd -= calc_exp(sc[j], sc[i])
for j in xrange(i + 1, len(q_fea), 1):
assert q_lable[i] >= q_lable[j]
if q_lable[i] == q_lable[j]:
continue
# i > j
if model_name == "lambdarank":
dcg_diff = DCG_DIFF(q_lable[i], q_lable[j], rank[i], rank[j]) / idcg
lmd += calc_exp(sc[i], sc[j]) * dcg_diff
else: # ranknet speedup
lmd += calc_exp(sc[i], sc[j])
if lmd:
s_left.append(q_fea[i])
s_lw.append(lmd)
if model_name in ["ranknet", "ranking_svm", "lambdarank_slow"]:
if model_name == "lambdarank_slow":
sc = model.infer(q_fea)
sc = [s[0] for s in sc]
rank = score2rank(sc)
for i in xrange(len(q_fea)):
for j in xrange(i + 1, len(q_fea), 1):
assert q_lable[i] >= q_lable[j]
if q_lable[i] == q_lable[j]:
continue
s_left.append(q_fea[i])
s_right.append(q_fea[j])
if model_name != "lambdarank_slow":
s_lw.append(1.)
else:
dcg_diff = DCG_DIFF(q_lable[i], q_lable[j], rank[i], rank[j]) / idcg
s_lw.append(1. * dcg_diff)
elif model_name in ["log_loss_binary_classify", "mse_regression"]:
for i in xrange(len(q_fea)):
s_left.append(q_fea[i])
if model_name == "mse_regression":
s_lw.append(1. * q_lable[i])
else:
s_lw.append(0 if q_lable[i] == 0 else 1.)
return s_left, s_right, s_lw
if __name__ == "__main__":
lr_rate = 0.001
batch_size = 50
model_name = "lambdarank"
fold_id = 1
epoch_num = 150
fea_num = 46
def print_help(msg=None):
if msg:
print msg
print "usage: python %s module_name fold_id" % (sys.argv[0])
print " supported modules: fea_XXX," + ", ".join(RankModel.support_models)
sys.exit(-1)
if len(sys.argv) != 3:
print_help()
model_name = sys.argv[1]
if model_name not in RankModel.support_models and model_name[:4] != "fea_":
print_help("module=%s not supported!" % (model_name))
if model_name[:4] == "fea_":
epoch_num = 1
fold_id = int(sys.argv[2])
os.system("mkdir -p score/%s/" % (model_name))
test_save_file = "score/%s/%s.%d.sc" % (model_name, model_name, fold_id)
train_data, valid_data, test_data = get_fold(fold_id)
precess_train_data(train_data)
train_qids = train_data[1].keys()
batch_cnt = (len(train_qids) + batch_size - 1) / batch_size
model = RankModel(model_name, lr_rate, fea_num=fea_num)
valid_res = []
for step in xrange(epoch_num):
random.shuffle(train_qids)
ls_total = 0.
for batch_idx in xrange(batch_cnt):
qids = train_qids[batch_idx * batch_size: (batch_idx + 1) * batch_size]
train_samples = get_samples(model, train_data, qids)
if len(train_samples[0]) == 0:
continue
ls_total += model.train(*train_samples)
# 把本epoch的结果存下来
metric_value = check_test(model, valid_data[0], "valid %d %.6f" % (step, ls_total * 1. / batch_cnt))
weight_value = model.sess.run(model.weight_vars)
valid_res.append(list(metric_value) + [weight_value, step])
# 根据验证集选出最佳模型,并在test集合上试验效果
valid_res_sorted = sorted(valid_res, key=lambda x: sum(x[0:-2]), reverse=True)
best_step = valid_res_sorted[0][-1]
best_epoch_weight = valid_res_sorted[0][-2]
feed_dict = {model.weight_vars[i]:best_epoch_weight[i] for i in xrange(len(best_epoch_weight))}
check_test(model, test_data[0], "test_on_step_%d" % (best_step), feed_dict=feed_dict)
save_test_score(model, test_data[0], feed_dict=feed_dict, save_file=test_save_file)