This repository was archived by the owner on Jul 1, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathBackwardsCompatibility.swift
159 lines (147 loc) · 6.38 KB
/
BackwardsCompatibility.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright 2019 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import _Differentiation
//===------------------------------------------------------------------------------------------===//
// Losses
//===------------------------------------------------------------------------------------------===//
/// Returns the L1 loss between predictions and expectations.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func l1Loss<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
l1Loss(predicted: predicted, expected: expected, reduction: { $0.sum() })
}
/// Returns the L2 loss between predictions and expectations.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func l2Loss<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
l2Loss(predicted: predicted, expected: expected, reduction: { $0.sum() })
}
/// Returns the hinge loss between predictions and expectations.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func hingeLoss<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
hingeLoss(predicted: predicted, expected: expected, reduction: { $0.mean() })
}
/// Returns the squared hinge loss between predictions and expectations.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func squaredHingeLoss<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
squaredHingeLoss(predicted: predicted, expected: expected, reduction: { $0.mean() })
}
/// Returns the categorical hinge loss between predictions and expectations.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func categoricalHingeLoss<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
categoricalHingeLoss(predicted: predicted, expected: expected, reduction: { $0.mean() })
}
/// Returns the logarithm of the hyperbolic cosine of the error between predictions and
/// expectations.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func logCoshLoss<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
logCoshLoss(predicted: predicted, expected: expected, reduction: { $0.mean() })
}
/// Returns the Poisson loss between predictions and expectations.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func poissonLoss<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
poissonLoss(predicted: predicted, expected: expected, reduction: { $0.mean() })
}
/// Returns the Kullback-Leibler divergence (KL divergence) between between expectations and
/// predictions. Given two distributions `p` and `q`, KL divergence computes `p * log(p / q)`.
///
/// - Parameters:
/// - predicted: Predicted outputs from a neural network.
/// - expected: Expected values, i.e. targets, that correspond to the correct output.
@differentiable(reverse, wrt: predicted)
@differentiable(reverse, wrt: (predicted, expected))
public func kullbackLeiblerDivergence<Scalar: TensorFlowFloatingPoint>(
predicted: Tensor<Scalar>,
expected: Tensor<Scalar>
) -> Tensor<Scalar> {
kullbackLeiblerDivergence(predicted: predicted, expected: expected, reduction: { $0.sum() })
}
/// Returns the softmax cross entropy (categorical cross entropy) between logits and labels.
///
/// - Parameters:
/// - logits: One-hot encoded outputs from a neural network.
/// - labels: Indices (zero-indexed) of the correct outputs.
@differentiable(reverse, wrt: logits)
public func softmaxCrossEntropy<Scalar: TensorFlowFloatingPoint>(
logits: Tensor<Scalar>,
probabilities: Tensor<Scalar>
) -> Tensor<Scalar> {
softmaxCrossEntropy(logits: logits, probabilities: probabilities, reduction: { $0.mean() })
}
/// Returns the sigmoid cross entropy (binary cross entropy) between logits and labels.
/// - Parameters:
/// - logits: The unscaled output of a neural network.
/// - labels: Integer values that correspond to the correct output.
@differentiable(reverse, wrt: logits)
@differentiable(reverse, wrt: (logits, labels))
public func sigmoidCrossEntropy<Scalar: TensorFlowFloatingPoint>(
logits: Tensor<Scalar>,
labels: Tensor<Scalar>
) -> Tensor<Scalar> {
sigmoidCrossEntropy(logits: logits, labels: labels, reduction: { $0.mean() })
}