Skip to content

Commit 930d791

Browse files
90: implement exp r=japaric a=erikdesjardins closes rust-lang#14 Co-authored-by: Erik <[email protected]>
2 parents 68e423a + 868ec1b commit 930d791

File tree

4 files changed

+153
-3
lines changed

4 files changed

+153
-3
lines changed

src/lib.rs

-2
Original file line numberDiff line numberDiff line change
@@ -378,7 +378,6 @@ pub trait F64Ext: private::Sealed {
378378

379379
fn sqrt(self) -> Self;
380380

381-
#[cfg(todo)]
382381
fn exp(self) -> Self;
383382

384383
#[cfg(todo)]
@@ -518,7 +517,6 @@ impl F64Ext for f64 {
518517
sqrt(self)
519518
}
520519

521-
#[cfg(todo)]
522520
#[inline]
523521
fn exp(self) -> Self {
524522
exp(self)

src/math/exp.rs

+150
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,150 @@
1+
/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
2+
/*
3+
* ====================================================
4+
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5+
*
6+
* Permission to use, copy, modify, and distribute this
7+
* software is freely granted, provided that this notice
8+
* is preserved.
9+
* ====================================================
10+
*/
11+
/* exp(x)
12+
* Returns the exponential of x.
13+
*
14+
* Method
15+
* 1. Argument reduction:
16+
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
17+
* Given x, find r and integer k such that
18+
*
19+
* x = k*ln2 + r, |r| <= 0.5*ln2.
20+
*
21+
* Here r will be represented as r = hi-lo for better
22+
* accuracy.
23+
*
24+
* 2. Approximation of exp(r) by a special rational function on
25+
* the interval [0,0.34658]:
26+
* Write
27+
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
28+
* We use a special Remez algorithm on [0,0.34658] to generate
29+
* a polynomial of degree 5 to approximate R. The maximum error
30+
* of this polynomial approximation is bounded by 2**-59. In
31+
* other words,
32+
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
33+
* (where z=r*r, and the values of P1 to P5 are listed below)
34+
* and
35+
* | 5 | -59
36+
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
37+
* | |
38+
* The computation of exp(r) thus becomes
39+
* 2*r
40+
* exp(r) = 1 + ----------
41+
* R(r) - r
42+
* r*c(r)
43+
* = 1 + r + ----------- (for better accuracy)
44+
* 2 - c(r)
45+
* where
46+
* 2 4 10
47+
* c(r) = r - (P1*r + P2*r + ... + P5*r ).
48+
*
49+
* 3. Scale back to obtain exp(x):
50+
* From step 1, we have
51+
* exp(x) = 2^k * exp(r)
52+
*
53+
* Special cases:
54+
* exp(INF) is INF, exp(NaN) is NaN;
55+
* exp(-INF) is 0, and
56+
* for finite argument, only exp(0)=1 is exact.
57+
*
58+
* Accuracy:
59+
* according to an error analysis, the error is always less than
60+
* 1 ulp (unit in the last place).
61+
*
62+
* Misc. info.
63+
* For IEEE double
64+
* if x > 709.782712893383973096 then exp(x) overflows
65+
* if x < -745.133219101941108420 then exp(x) underflows
66+
*/
67+
68+
use super::scalbn;
69+
70+
const HALF: [f64; 2] = [0.5, -0.5];
71+
const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
72+
const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
73+
const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
74+
const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
75+
const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
76+
const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
77+
const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
78+
const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
79+
80+
#[inline]
81+
pub fn exp(mut x: f64) -> f64 {
82+
let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
83+
let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149
84+
85+
let hi: f64;
86+
let lo: f64;
87+
let c: f64;
88+
let xx: f64;
89+
let y: f64;
90+
let k: i32;
91+
let sign: i32;
92+
let mut hx: u32;
93+
94+
hx = (x.to_bits() >> 32) as u32;
95+
sign = (hx >> 31) as i32;
96+
hx &= 0x7fffffff; /* high word of |x| */
97+
98+
/* special cases */
99+
if hx >= 0x4086232b {
100+
/* if |x| >= 708.39... */
101+
if x.is_nan() {
102+
return x;
103+
}
104+
if x > 709.782712893383973096 {
105+
/* overflow if x!=inf */
106+
x *= x1p1023;
107+
return x;
108+
}
109+
if x < -708.39641853226410622 {
110+
/* underflow if x!=-inf */
111+
force_eval!((-x1p_149 / x) as f32);
112+
if x < -745.13321910194110842 {
113+
return 0.;
114+
}
115+
}
116+
}
117+
118+
/* argument reduction */
119+
if hx > 0x3fd62e42 {
120+
/* if |x| > 0.5 ln2 */
121+
if hx >= 0x3ff0a2b2 {
122+
/* if |x| >= 1.5 ln2 */
123+
k = (INVLN2 * x + HALF[sign as usize]) as i32;
124+
} else {
125+
k = 1 - sign - sign;
126+
}
127+
hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
128+
lo = k as f64 * LN2LO;
129+
x = hi - lo;
130+
} else if hx > 0x3e300000 {
131+
/* if |x| > 2**-28 */
132+
k = 0;
133+
hi = x;
134+
lo = 0.;
135+
} else {
136+
/* inexact if x!=0 */
137+
force_eval!(x1p1023 + x);
138+
return 1. + x;
139+
}
140+
141+
/* x is now in primary range */
142+
xx = x * x;
143+
c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
144+
y = 1. + (x * c / (2. - c) - lo + hi);
145+
if k == 0 {
146+
y
147+
} else {
148+
scalbn(y, k)
149+
}
150+
}

src/math/mod.rs

+2
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@ macro_rules! force_eval {
99
mod ceil;
1010
mod ceilf;
1111
mod cosf;
12+
mod exp;
1213
mod expf;
1314
mod fabs;
1415
mod fabsf;
@@ -39,6 +40,7 @@ mod truncf;
3940
pub use self::ceil::ceil;
4041
pub use self::ceilf::ceilf;
4142
pub use self::cosf::cosf;
43+
pub use self::exp::exp;
4244
pub use self::expf::expf;
4345
pub use self::fabs::fabs;
4446
pub use self::fabsf::fabsf;

test-generator/src/main.rs

+1-1
Original file line numberDiff line numberDiff line change
@@ -703,7 +703,7 @@ f64_f64! {
703703
ceil,
704704
// cos,
705705
// cosh,
706-
// exp,
706+
exp,
707707
// exp2,
708708
// expm1,
709709
floor,

0 commit comments

Comments
 (0)