forked from LBANN/lbann
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcudnn_wrapper.cu
214 lines (189 loc) · 7.33 KB
/
cudnn_wrapper.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2014-2016, Lawrence Livermore National Security, LLC.
// Produced at the Lawrence Livermore National Laboratory.
// Written by the LBANN Research Team (B. Van Essen, et al.) listed in
// the CONTRIBUTORS file. <[email protected]>
//
// LLNL-CODE-697807.
// All rights reserved.
//
// This file is part of LBANN: Livermore Big Artificial Neural Network
// Toolkit. For details, see http://software.llnl.gov/LBANN or
// https://github.com/LLNL/LBANN.
//
// Licensed under the Apache License, Version 2.0 (the "Licensee"); you
// may not use this file except in compliance with the License. You may
// obtain a copy of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the license.
//
// cudnn_wrapper .hpp .cpp - cuDNN support - wrapper classes, utility functions
////////////////////////////////////////////////////////////////////////////////
#include "lbann/utils/cudnn_wrapper.hpp"
#include "lbann/utils/exception.hpp"
#include "El.hpp"
namespace lbann {
namespace cudnn {
namespace {
__global__ void constant_kernel(DataType *data,
DataType val,
El::Int len) {
int offset = blockIdx.x * blockDim.x + threadIdx.x;
if (offset >= len) return;
data[offset] = val;
}
__global__ void reduce_kernel(DataType *dst, const DataType *src,
El::Int len) {
int offset = blockIdx.x * blockDim.x + threadIdx.x;
if (offset >= len) return;
dst[offset] += src[offset];
}
#ifdef LBANN_HAS_NCCL2
__global__ void scale_kernel(DataType *data,
const DataType scale,
El::Int len) {
int offset = blockIdx.x * blockDim.x + threadIdx.x;
if (offset >= len) return;
data[offset] *= scale;
}
#endif // LBANN_HAS_NCCL2
}
void cudnn_manager::set_on_gpu(int i,
DataType* gpu_data,
DataType val,
int height,
int width) {
CHECK_CUDA(cudaSetDevice(m_gpus[i]));
const El::Int len = height * width;
const int tb_dim = 256;
const int grid_dim = len/tb_dim + (len % tb_dim ? 1 : 0);
constant_kernel<<<grid_dim, tb_dim>>>(gpu_data, val, len);
}
void cudnn_manager::allreduce_on_gpus(std::vector<DataType*>& gpu_data,
El::Int height,
El::Int width) {
if (m_num_gpus < 2) {
return;
}
// Determine work space size
const El::Int work_space_size = get_minimum_work_space_size();
const El::Int min_work_space_size = 1024;
if (work_space_size < min_work_space_size) {
std::stringstream err;
err << __FILE__ << " " << __LINE__ << " :: "
<< "insufficient GPU work space "
<< "(requires " << min_work_space_size << " bytes on each GPU, "
<< "but only have " << work_space_size << " bytes)";
throw lbann_exception(err.str());
}
// Setup work buffers
const El::Int buf_len = work_space_size / (2 * sizeof(DataType));
std::vector<DataType*> bufs[2];
for(int i=0; i<m_num_gpus; ++i) {
DataType* work_space = static_cast<DataType*>(get_work_space(i));
bufs[0].push_back(work_space);
bufs[1].push_back(work_space + buf_len);
}
El::Int total_len = height * width;
El::Int offset = 0;
do {
El::Int len = std::min(total_len - offset, buf_len);
int sbuf_idx = 0;
int dbuf_idx = 1;
for (int j = 0; j < m_num_gpus - 1; ++j) {
for(int i = 0; i < m_num_gpus; ++i) {
CHECK_CUDA(cudaSetDevice(m_gpus[i]));
int src_idx = i;
int dst_idx = (i + 1) % m_num_gpus;
int src_dev = m_gpus[src_idx];
int dst_dev = m_gpus[dst_idx];
DataType *src_buf = j == 0 ? gpu_data[src_idx] + offset : bufs[sbuf_idx][src_idx];
DataType *dst_buf = bufs[dbuf_idx][dst_idx];
// std::cerr << "Copying from device " << src_dev << " to device " << dst_dev << "\n";
// copy to the next device in the ring
FORCE_CHECK_CUDA(cudaMemcpyPeerAsync(dst_buf, dst_dev, src_buf, src_dev,
len * sizeof(DataType), get_stream(src_idx)));
}
synchronize();
for(int i = 0; i < m_num_gpus; ++i) {
CHECK_CUDA(cudaSetDevice(m_gpus[i]));
DataType *dst_buf = bufs[dbuf_idx][i];
// TODO: use Thrust
int tb_dim = 256;
int grid_dim = len / tb_dim + (len % tb_dim ? 1 : 0);
reduce_kernel<<<grid_dim, tb_dim>>>(gpu_data[i] + offset, dst_buf, len);
}
std::swap(sbuf_idx, dbuf_idx);
}
offset += len;
} while (offset < total_len);
}
/// @todo Efficient implementation
void cudnn_manager::global_allreduce_on_gpus(std::vector<DataType*>& gpu_data,
El::Int height,
El::Int width,
El::mpi::Comm comm) {
if(!is_nccl_used()){
static Mat cpu_workspace;
cpu_workspace.Resize(height, width, height);
allreduce_on_gpus(gpu_data, height, width);
copy_from_gpu(0, cpu_workspace, gpu_data[0]);
synchronize();
El::AllReduce(cpu_workspace, comm);
broadcast_to_gpus(gpu_data, cpu_workspace);
} else{
#ifdef LBANN_HAS_NCCL2
global_allreduce_on_gpus_nccl (gpu_data, height, width);
synchronize();
#else
throw lbann_exception("cudnn_manager: NCCL not detected");
#endif // #ifdef LBANN_HAS_NCCL2
}
}
#ifdef LBANN_HAS_NCCL2
/// Convert DataType to NCCL data type. DataType is either double or float (default).
ncclDataType_t cudnn_manager::nccl_datatype() {
switch(sizeof(DataType) ) {
case 8:
return ncclDouble;
case 4:
return ncclFloat;
case 2:
return ncclHalf;
default:
throw lbann::lbann_exception("cudnn_wrapper_cuda: invalid data type for NCCL");
}
}
void cudnn_manager::global_allreduce_on_gpus_nccl(std::vector<DataType*>& gpu_data,
El::Int height,
El::Int width,
DataType scale) {
/**
gpu_data is a vector of pointers, each of which points to a part of
matrix allocated to GPU memory. Since we assume that one MPI rank is
assigned to one GPU, the number of element in gpu_data is 1. */
int num_gpus_assigned = m_gpus.size();
ncclDataType_t type = nccl_datatype();
El::Int total_len = height * width;
if(num_gpus_assigned > 1) ncclGroupStart();
for(int i = 0; i < num_gpus_assigned; ++i) {
CHECK_CUDA(cudaSetDevice(m_gpus[i]));
NCCLCHECK(ncclAllReduce(gpu_data[i], gpu_data[i], total_len, type, ncclSum, m_nccl_comm[i], get_stream(i)));
/// Apply scaling, if scale != 1
if(scale != DataType(1)) {
int tb_dim = 256;
int grid_dim = total_len/tb_dim + (total_len % tb_dim ? 1 : 0);
scale_kernel<<<grid_dim, tb_dim>>>(gpu_data[i], scale, total_len);
}
}
if(num_gpus_assigned > 1) ncclGroupEnd();
}
#endif // LBANN_HAS_NCCL2
} // namespace cudnn
} // namespace lbann