-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvalidate.py
280 lines (247 loc) · 7.88 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import os
import pickle
from datetime import datetime
import time
from ecord.solvers import DQNSolver
from ecord.validate.testing import TestGraphsConfig, test_solver
from experiments.configs import DQNTrainingConfig
from experiments.utils.system import mk_dir, export_summary, save_to_disk
def get_parser_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_loc",
help="Folder of saved experiment.",
type=str,
default=None,
)
parser.add_argument(
"--name",
help="Experiment name",
type=str,
default=None,
)
parser.add_argument(
"--checkpoint_name",
help="Folder of saved experiment.",
type=str,
default='checkpoints/final_solver',
)
parser.add_argument(
"--id",
help="String to identify this experiment.",
type=str,
default='',
)
parser.add_argument(
"--graph_loc",
help="Location of GSet graph",
type=str,
default='graphs/ecodqn/validation/ER_40spin_p15_100graphs.pkl',
)
parser.add_argument(
"--num_steps",
help="Steps per tradjectory",
type=int,
default=-2,
)
parser.add_argument(
"--max_time",
help="Maximum solver time (default is no limit)",
type=float,
default=None,
)
parser.add_argument(
"--num_tradj",
help="Number of tradjectories per graph",
type=int,
default=1,
)
parser.add_argument(
"--tau",
help="Temperature of policy",
type=float,
default=5e-4,
)
parser.add_argument(
"--num_load",
help="Number of graphs to load.",
type=int,
default=100,
)
parser.add_argument(
"--graph_batch_size",
help="Number of graphs per batch.",
type=int,
default=None,
)
parser.add_argument(
"--tradj_batch_size",
help="Number of trajectories per batch.",
type=int,
default=None,
)
parser.add_argument(
"--pre_solve",
help="Whether to pre solve with greedy.",
action='store_true',
default=False,
)
parser.add_argument(
"--post_solve",
help="Whether to post solve with greedy from the best state.",
action='store_true',
default=False,
)
parser.add_argument(
"--save_summary", '-s',
help="Whether to save a summary.",
action='store_true',
default=False,
)
parser.add_argument(
"--dump_logs", '-d',
help="Whether to save the logs.",
action='store_true',
default=False,
)
parser.add_argument(
"--ecodqn",
help="Use ECO-DQN agent.",
action='store_true',
default=False
)
parser.add_argument(
"--log_stats", '-l',
help="Whether to log detailed statistics (this is slower).",
action='store_true',
default=False,
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_parser_args()
now = datetime.now()
save_loc = args.save_loc
if args.save_loc is None:
save_loc = f"data/{now.strftime('%y_%m_%d')}"
exp_name = args.name
if exp_name is None:
exp_name = now.strftime("%H_%M_%S")
exp_dir = os.path.join(save_loc, exp_name)
info_dir = os.path.join(exp_dir, "info")
test_dir = os.path.join(exp_dir, f"test/{args.checkpoint_name.replace('/', '_')}")
if not os.path.isdir(exp_dir):
raise Exception(f"Target directory ({exp_dir}) doesn't exist.")
network_config_fname = os.path.join(info_dir, "network.config")
print(f"Loading network config from {network_config_fname}", end="...")
with open(network_config_fname, 'rb') as network_config_file:
network_config = pickle.load(network_config_file)
print("done.\n")
gnn = network_config.get_gnn()
rnn = network_config.get_rnn()
gnn2rnn = network_config.get_gnn2rnn()
node_encoder = network_config.get_node_encoder()
node_classifier = network_config.get_node_classifier()
graph_batcher = network_config.get_graph_batcher()
# Make config with defaults, we won't be training anyway...
training_config = DQNTrainingConfig()
checkpoint_name = args.checkpoint_name
if os.path.splitext(checkpoint_name) != ".pth":
checkpoint_name += ".pth"
solver_checkpoint_fname = os.path.join(exp_dir, checkpoint_name)
solver_args = {
'gnn':gnn,
'rnn':rnn,
'gnn2rnn':gnn2rnn,
'node_encoder':node_encoder,
'node_classifier':node_classifier,
'use_ecodqn': args.ecodqn,
'add_glob_to_nodes': network_config.add_glob_to_nodes,
'add_glob_to_obs': network_config.add_glob_to_obs,
'node_features': network_config.node_features,
'global_features': network_config.glob_features,
'allow_reversible_actions' : training_config.allow_reversible_actions,
'default_actor_idx' : None,
'device' : None
}
try:
# Try double Q-network
solver = DQNSolver(
use_double_q_networks=True,
**solver_args,
)
solver.load(solver_checkpoint_fname, quiet=False)
except:
# Try single Q-network
solver = DQNSolver(
use_double_q_networks=False,
**solver_args,
)
solver.load(solver_checkpoint_fname, quiet=False)
solver.test()
graph_dir, graph_name = os.path.split(args.graph_loc)
if graph_dir=='':
graph_dir = '_gset'
test_config = TestGraphsConfig.from_file(
label=graph_name,
graph_loc=os.path.join(graph_dir, graph_name),
num_steps=args.num_steps,
tradj_per_graph=args.num_tradj,
tau=args.tau,
max_time=args.max_time,
pre_solve_with_greedy=args.pre_solve,
post_solve_with_greedy_from_best=args.post_solve,
use_network_initialisation=False,
num_load=args.num_load,
graphs_bsz=args.graph_batch_size,
tradj_bsz=args.tradj_batch_size,
)
if args.dump_logs or args.save_summary:
mk_dir(test_dir, quiet=True)
summary_str = ""
res_str = "\n--- Results summary ---\n"
_summary_str = test_config.get_summary()
summary_str += f"{_summary_str}\n"
print(_summary_str)
t = time.time()
log = test_solver(
solver=solver,
graph_batcher=graph_batcher,
config=test_config,
log_stats=args.log_stats,
verbose=True
)
t_test = time.time() - t
lab = test_config.get_label()
if args.dump_logs:
t = time.time()
fname = os.path.join(test_dir, lab)
if args.id != '':
fname += f"_{args.id}"
save_to_disk(fname, log, compressed=True, verbose=True)
t_dump = time.time() - t
scores_max, scores_mean = log['apx_max'], log['apx_mean']
if scores_max is None:
scores_max, scores_mean = log['scores_max'], log['scores_mean']
t_step = log['t_step'].mean() * 10 ** 3
tmp_res_str = f"\n{lab}:"
tmp_res_str += f"\n\tBest (mean) score - raw : {scores_max.mean():.3f} ({scores_mean.mean():.3f}) - {log['scores_max'].mean().item()}."
tmp_res_str += f"\n\tAve. time to opt: {log['t_opt'].mean():.3f}s out of {log['t_tot'].mean():.3f}s."
tmp_res_str += f"\n\tAve. batched step time: {t_step:.3f}ms."
if args.dump_logs:
tmp_res_str += f"\n\tTotal testing/saving time: {t_test:.1f}/{t_dump:.1f}s.\n"
print(tmp_res_str)
res_str += tmp_res_str
if args.save_summary:
summary_fname = os.path.join(test_dir, f"summary")
if args.id != '':
summary_fname += f"_{args.id}"
summary_fname += ".txt"
print(f"Saving summary to {summary_fname}", end="...")
export_summary(
summary_fname,
summary_str + res_str
)
print("done.")
print(res_str)