This repository was archived by the owner on Oct 12, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgenerate_arrays.jl
525 lines (461 loc) · 16.4 KB
/
generate_arrays.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
importall Base
using Compat
abstract ImmutableArray{T,N} <: AbstractArray{T,N}
typealias ImmutableVector{T} ImmutableArray{T,1}
typealias ImmutableMatrix{T} ImmutableArray{T,2}
export unit, row, column
# Generic ops
Base.copy(x::ImmutableArray) = x
Base.one{M<:ImmutableMatrix}(::M) = eye(M)
function generate_arrays(maxSz::Integer)
# operations
const unaryOps = (:-, :~, :conj, :abs,
:sin, :cos, :tan, :sinh, :cosh, :tanh,
:asin, :acos, :atan, :asinh, :acosh, :atanh,
:sec, :csc, :cot, :asec, :acsc, :acot,
:sech, :csch, :coth, :asech, :acsch, :acoth,
:sinc, :cosc, :cosd, :cotd, :cscd, :secd,
:sind, :tand, :acosd, :acotd, :acscd, :asecd,
:asind, :atand, :radians2degrees, :degrees2radians,
:log, :log2, :log10, :log1p, :exponent, :exp,
:exp2, :expm1, :cbrt, :sqrt, :square, :erf,
:erfc, :erfcx, :erfi, :dawson, :ceil, :floor,
:trunc, :round, :significand, :lgamma, :hypot,
:gamma, :lfact, :frexp, :modf, :airy, :airyai,
:airyprime, :airyaiprime, :airybi, :airybiprime,
:besselj0, :besselj1, :bessely0, :bessely1,
:eta, :zeta, :digamma)
# vec-vec and vec-scalar
const binaryOps = (:.+, :.-,:.*, :./, :.\, :.^,
:.==, :.!=, :.<, :.<=, :.>, :.>=,
:min, :max,
:div, :fld, :rem, :mod, :mod1, :cmp,
:atan2, :besselj, :bessely, :hankelh1, :hankelh2,
:besseli, :besselk, :beta, :lbeta)
# vec-vec only
const binaryOps2 = (:+,:-)
const reductions = ((:sum,:+),(:prod,:*),(:minimum,:min),(:maximum,:max))
# expression functions
vecTyp(n) = @compat Symbol(string("Vector",n))
vecTypT(n) = Expr(:curly, vecTyp(n), :T)
matTyp(r,c) = @compat Symbol(string("Matrix",r,"x",c))
matTypT(r,c) = Expr(:curly, matTyp(r,c,), :T)
elt(i) = @compat Symbol(string("e",i))
col(i) = @compat Symbol(string("c",i))
mem(s,e) = Expr(:.,s,Expr(:quote,e))
velt(v,i) = mem(v,elt(i))
melt(m,i,j) = mem(mem(m,col(j)),elt(i))
# vector types
for sz = 1:maxSz
local Typ = vecTyp(sz)
local TypT = vecTypT(sz)
# the body of the type definition
local defn = :(immutable $TypT <: ImmutableVector{T} end)
# the members of the type
for i = 1:sz
local e = elt(i)
push!(defn.args[3].args, :($e::T))
end
# instantiate the type definition
eval(defn)
# unary and n-ary constructors
ctorn_sig = :($TypT())
ctorn_body = :($TypT())
ctor1_body = :($TypT())
for i = 1:sz
local arg = @compat Symbol(string("a",i))
push!(ctorn_sig.args, :($arg::T))
push!(ctorn_body.args, arg)
push!(ctor1_body.args, :a)
end
ctorn = :($ctorn_sig = $ctorn_body)
ctor1 = :($TypT(a::T) = $ctor1_body)
eval(ctorn)
eval(ctor1)
# construct or convert from other vector types
typ_call = :($Typ())
# makes $Typ(a[1], a[2]..., a[sz])
append!(typ_call.args, [:(a[$i]) for i = 1:sz])
@eval $Typ(a::AbstractVector) = $typ_call
convert_call = :($Typ())
# makes $Typ(convert(T, a[1]), ..., convert(T, a[sz]))
append!(convert_call.args, [:(convert(T, a[$i])) for i = 1:sz])
@eval convert{T}(::Type{$TypT}, a::AbstractVector) = $convert_call
# convert to Array
@eval begin
function convert{T}(::Type{Vector{T}}, v::$TypT)
a = Array(T,$sz)
for i = 1:$sz
a[i] = v[i]
end
a
end
end
# equality
# this generates messy lowered code but the assembly looks fine
equalities = [:(a[$i] == b[$i]) for i = 1:sz]
while length(equalities) > 1
equalities[1] = :($(equalities[1]) && $(equalities[2]))
deleteat!(equalities, 2)
end
eq_bdy = equalities[1]
@eval (==)(a::$Typ, b::$Typ) = $eq_bdy
# getindex
local getix = :(throw(BoundsError()))
for i = sz:-1:1
local val = mem(:v,elt(i))
getix = :(ix == $i ? $val : $getix)
end
getix = :(@inline getindex{T}(v::$TypT, ix::Integer) = $getix)
eval(getix)
# helper for defining maps
mapBody(f,j) = begin
mp = :($Typ())
for i = 1:sz
local ff = copy(f)
ff.args[j] = mem(:v,elt(i))
push!(mp.args, ff)
end
mp
end
for op = unaryOps
local bdy = mapBody(:($op(x)),2)
@eval $op(v::$Typ) = $bdy
end
for op = binaryOps
local bdy = :($Typ())
for i = 1:sz
local mem1 = mem(:v1,elt(i))
local mem2 = mem(:v2,elt(i))
push!(bdy.args, Expr(:call,op,mem1,mem2))
end
@eval $op(v1::$Typ,v2::$Typ) = $bdy
bdy = mapBody(:($op(s,x)),3)
if op == :.^ # special version for MathConst{:e}
@eval $op(s::Irrational{:e},m::$Typ) = $bdy
end
if op == :min || op == :max
@eval $op{T2<:Real}(s::T2,v::$Typ) = $bdy
else
@eval $op(s::Number,v::$Typ) = $bdy
end
bdy = mapBody(:($op(x,s)),2)
if op == :min || op == :max
@eval $op{T2<:Real}(v::$Typ,s::T2) = $bdy
else
@eval $op(v::$Typ,s::Number) = $bdy
end
end
for op = binaryOps2
local bdy = :($Typ())
for i = 1:sz
local mem1 = mem(:v1,elt(i))
local mem2 = mem(:v2,elt(i))
push!(bdy.args, Expr(:call,op,mem1,mem2))
end
@eval $op(v1::$Typ,v2::$Typ) = $bdy
end
for pr = reductions
local bdy = Expr(:call,pr[2])
for i = 1:sz
push!(bdy.args, mem(:v,elt(i)))
end
local meth = pr[1]
@eval $meth(v::$Typ) = $bdy
end
# convert to column matrix
local colMatT = matTypT(sz,1)
@eval column{T}(v::$TypT) = $colMatT(v)
# convert to row matrix
local rowMat = Expr(:call,matTyp(1,sz))
for i = 1:sz
local val = mem(:v,elt(i))
push!(rowMat.args, :(Vector1{T}($val)))
end
@eval row{T}(v::$TypT) = $rowMat
# vector norms
@eval norm{T}(v::$TypT) = sqrt(dot(v,v))
@eval norm{T}(v::$TypT,p::Number) = begin
if p == 1
sum(abs(v))
elseif p == 2
norm(v)
elseif p == Inf
max(abs(v))
else
norm(copy(v),p)
end
end
# standard basis vectors
local bdy = :($TypT())
for j = 1:sz
push!(bdy.args, :(i==$j?one(T):zero(T)))
end
@eval unit{T}(::Type{$TypT}, i::Integer) = $bdy
# diagonal matrix
sqMatTypT = matTypT(sz,sz)
bdy = :($sqMatTypT())
for i = 1:sz
push!(bdy.args, :(v[$i].*unit($TypT,$i)))
end
@eval diagm{T}(v::$TypT) = $bdy
# elementwise type conversion
bdy = mapBody(:(convert(T,x)),3)
@eval convert{T}(::Type{$TypT}, v::$Typ) = $bdy
# some one-liners
@eval similar{T}(::$TypT, t::DataType, dims::Dims) = Array(t, dims)
@eval size(::$Typ) = ($sz,)
@eval zero{T}(::Type{$TypT}) = $Typ(zero(T))
@eval dot{T}(v1::$TypT,v2::$TypT) = sum(v1.*conj(v2))
@eval unit{T}(v::$TypT) = v/norm(v)
end
# matrix types
for rSz = 1:maxSz, cSz = 1:maxSz
local Typ = matTyp(rSz,cSz)
local TypT = matTypT(rSz,cSz)
local ColTyp = vecTyp(rSz)
local ColTypT = vecTypT(rSz)
local RowTyp = vecTyp(cSz)
local RowTypT = vecTypT(cSz)
# the body of the type definition
local defn = :(immutable $TypT <: ImmutableMatrix{T} end)
# the members of the type
for i = 1:cSz
local c = col(i)
push!(defn.args[3].args, :($c::$ColTypT))
end
# instantiate the type definition
eval(defn)
# unary and n-ary constructors
ctorn_sig = :($TypT())
ctorn_body = :($TypT())
ctor1_body = :($TypT())
for i = 1:cSz
local arg = @compat Symbol(string("a",i))
push!(ctorn_sig.args, :($arg::$ColTypT))
push!(ctorn_body.args, arg)
push!(ctor1_body.args, :a)
end
ctorn = :($ctorn_sig = $ctorn_body)
ctor1 = :($TypT(a::$ColTypT) = $ctor1_body)
eval(ctorn)
eval(ctor1)
# construction from a scalar
@eval $TypT(a::T) = $Typ($ColTyp(a))
# construct or convert from other matrix types
# accomidate ntuple syntax change on 0.4
if VERSION < v"0.4-"
@eval $Typ(a::AbstractMatrix) = $Typ(ntuple($cSz, c->
$ColTyp(ntuple($rSz, r-> a[r,c])...))...)
else
@eval $Typ(a::AbstractMatrix) = $Typ(ntuple(c->
$ColTyp(ntuple(r-> a[r,c], $rSz)...), $cSz)...)
end
@eval convert{T}(::Type{$TypT}, x::AbstractMatrix) = $Typ(x)
# convert to Array
@eval begin
function convert{T}(::Type{Matrix{T}}, m::$TypT)
a = Array(T,$rSz,$cSz)
for i = 1:$rSz, j = 1:$cSz
a[i,j] = m[i,j]
end
a
end
end
# column access
local cl = :(error(BoundsError))
for j = cSz:-1:1
local val = mem(:m,col(j))
cl = :(ix == $j ? $val : $cl)
end
@eval column{T}(m::$TypT, ix::Integer) = $cl
# row access
local rw = :(error(BoundsError))
for i = rSz:-1:1
local rowexp = :($RowTypT())
for j = 1:cSz
push!(rowexp.args, mem(mem(:m,col(j)),elt(i)))
end
rw = :(ix == $i ? $rowexp : $rw)
end
@eval row{T}(m::$TypT, ix::Integer) = $rw
# getindex
@eval getindex{T}(m::$TypT, i::Integer, j::Integer) = column(m,j)[i]
@eval getindex{T}(m::$TypT, ix::Integer) =
getindex(m,mod(ix-1,$rSz)+1,div(ix-1,$rSz)+1)
# ctranspose
local bdy = Expr(:call, matTypT(cSz,rSz))
for i = 1:rSz
local rw = :($RowTypT())
for j = 1:cSz
local val = mem(mem(:m,col(j)),elt(i))
push!(rw.args, :(conj($val)))
end
push!(bdy.args, rw)
end
@eval ctranspose{T}(m::$TypT) = $bdy
# helper for defining maps
mapBody(f,k) = begin
local bdy = :($Typ())
for j = 1:cSz
local cl = :($ColTyp())
for i = 1:rSz
local ff = copy(f)
ff.args[k] = mem(mem(:m,col(j)),elt(i))
push!(cl.args, ff)
end
push!(bdy.args, cl)
end
bdy
end
for op = unaryOps
local bdy = mapBody(:($op(x)),2)
@eval $op(m::$Typ) = $bdy
end
for op = binaryOps
local bdy = :($Typ())
for j = 1:cSz
local cl = :($ColTyp())
for i = 1:rSz
push!(cl.args,
Expr(:call,op,
mem(mem(:m1,col(j)),elt(i)),
mem(mem(:m2,col(j)),elt(i))))
end
push!(bdy.args, cl)
end
@eval $op(m1::$Typ,m2::$Typ) = $bdy
bdy = mapBody(:($op(s,x)),3)
if op == :.^ # special version for MathConst{:e}
@eval $op(s::Irrational{:e},m::$Typ) = $bdy
end
if op == :min || op == :max
@eval $op{T2<:Real}(s::T2,m::$Typ) = $bdy
else
@eval $op(s::Number,m::$Typ) = $bdy
end
bdy = mapBody(:($op(x,s)),2)
if op == :min || op == :max
@eval $op{T2<:Real}(m::$Typ,s::T2) = $bdy
else
@eval $op(m::$Typ,s::Number) = $bdy
end
end
for op = binaryOps2
local bdy = :($Typ())
for j = 1:cSz
local cl = :($ColTyp())
for i = 1:rSz
push!(cl.args,
Expr(:call,op,
mem(mem(:m1,col(j)),elt(i)),
mem(mem(:m2,col(j)),elt(i))))
end
push!(bdy.args, cl)
end
@eval $op(m1::$Typ,m2::$Typ) = $bdy
end
for pr = reductions
local bdy = Expr(:call,pr[2])
for i = 1:rSz, j = 1:cSz
push!(bdy.args, mem(mem(:m,col(j)),elt(i)))
end
local meth = pr[1]
@eval $meth(m::$Typ) = $bdy
end
# vector-matrix multiplication
bdy = :($RowTypT())
for j = 1:cSz
local e = :(+())
for i = 1:rSz
push!(e.args,
Expr(:call, :*,
mem(:v,elt(i)),
mem(mem(:m,col(j)),elt(i))))
end
push!(bdy.args, e)
end
@eval *{T}(v::$ColTypT,m::$TypT) = $bdy
# matrix-vector multiplication
bdy = :($ColTypT())
for i = 1:rSz
local e = :(+())
for j = 1:cSz
push!(e.args,
Expr(:call, :*,
melt(:m,i,j),
velt(:v,j)))
end
push!(bdy.args, e)
end
@eval *{T}(m::$TypT,v::$RowTypT) = $bdy
# vector-matrix-vector multiplication
bdy = :(+())
for i = 1:rSz, j = 1:cSz
push!(bdy.args,
Expr(:call, :*,
mem(:vl,elt(i)),
mem(mem(:m,col(j)),elt(i)),
mem(:vr,elt(j))))
end
@eval *{T}(vl::$ColTypT,m::$TypT,vr::$RowTypT) = $bdy
# identity
bdy = :($TypT())
for j = 1:cSz
push!(bdy.args, :(unit($ColTypT,$j)))
end
@eval eye{T}(::Type{$TypT}) = $bdy
# matrix diagonal
diagSz = min(rSz,cSz)
diagTypT = vecTypT(diagSz)
bdy = :($diagTypT())
for i = 1:diagSz
push!(bdy.args, mem(mem(:m,col(i)),elt(i)))
end
@eval diag{T}(m::$TypT) = $bdy
# elementwise type conversion
bdy = mapBody(:(convert(T,x)),3)
@eval convert{T}(::Type{$TypT}, m::$Typ) = $bdy
# some one-liners
@eval similar{T}(::$TypT, t::DataType, dims::Dims) = Array(t, dims)
@eval size(::$Typ) = ($rSz,$cSz)
@eval zero{T}(::Type{$TypT}) = $Typ($ColTyp(zero(T)))
end
# matrix-matrix multiplication
for n = 1:maxSz, p = 1:maxSz, m = 1:maxSz
local bdy = Expr(:call, matTypT(n,m))
for j = 1:m
local c = Expr(:call, vecTypT(n))
for i = 1:n
local e = :(+())
for k = 1:p
push!(e.args,
Expr(:call, :*,
melt(:m1,i,k),
melt(:m2,k,j)))
end
push!(c.args, e)
end
push!(bdy.args, c)
end
local m1T = matTypT(n,p)
local m2T = matTypT(p,m)
@eval *{T}(m1::$m1T,m2::$m2T) = $bdy
end
# matrix determinant and inverse
for sz in 1:maxSz
local Typ = matTyp(sz,sz)
local TypT = matTypT(sz,sz)
@eval det{T}(a::$TypT) = det(convert(Array{T,2},a))
@eval inv{T}(a::$TypT) = $Typ(inv(convert(Array{T,2},a)))
end
# cross products
if maxSz >= 2
@eval cross(a::Vector2,b::Vector2) = a.e1*b.e2-a.e2*b.e1
end
if maxSz >= 3
@eval cross(a::Vector3,b::Vector3) = Vector3(a.e2*b.e3-a.e3*b.e2,
a.e3*b.e1-a.e1*b.e3,
a.e1*b.e2-a.e2*b.e1)
end
end