-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun.py
executable file
·476 lines (380 loc) · 17.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import time, random, gc, os, math, argparse
from os import path
import numpy as np
import torch
import torch.utils.data as data
from mylog import mylog
from options_process import optionsLoader
from data_process import myDataSet_Bert as Dataset
from utility import *
from model_bert import *
from searcher import Searcher
from searcher.scorer import *
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.tokenization import BertTokenizer
from parallel import DataParallelModel, DataParallelCriterion
random.seed(time.time())
LOG = mylog(reset=True)
def train(config):
net = BertForMaskedLM.from_pretrained(config.model)
lossFunc = KLDivLoss(config)
if torch.cuda.is_available():
net = net.cuda()
lossFunc = lossFunc.cuda()
if config.dataParallel:
net = DataParallelModel(net)
lossFunc = DataParallelCriterion(lossFunc)
options = optionsLoader(LOG, config.optionFrames, disp=False)
Tokenizer = BertTokenizer.from_pretrained(config.model)
prepareFunc = prepare_data
trainSet = Dataset('train', config.batch_size, lambda x: len(x[0]) + len(x[1]), prepareFunc, Tokenizer,
options['dataset'], LOG, 'train')
validSet = Dataset('valid', config.batch_size, lambda x: len(x[0]) + len(x[1]), prepareFunc, Tokenizer,
options['dataset'], LOG, 'valid')
print(trainSet.__len__())
Q = []
best_vloss = 1e99
counter = 0
lRate = config.lRate
prob_src = config.prob_src
prob_tgt = config.prob_tgt
num_train_optimization_steps = trainSet.__len__() * options['training']['stopConditions']['max_epoch']
param_optimizer = list(net.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=lRate,
e=1e-9,
t_total=num_train_optimization_steps,
warmup=0.0)
for epoch_idx in range(options['training']['stopConditions']['max_epoch']):
total_seen = 0
total_similar = 0
total_unseen = 0
total_source = 0
trainSet.setConfig(config, prob_src, prob_tgt)
trainLoader = data.DataLoader(
dataset=trainSet,
batch_size=1,
shuffle=True,
num_workers=config.dataLoader_workers,
pin_memory=True
)
validSet.setConfig(config, 0.0, prob_tgt)
validLoader = data.DataLoader(
dataset=validSet,
batch_size=1,
shuffle=False,
num_workers=config.dataLoader_workers,
pin_memory=True
)
for batch_idx, batch_data in enumerate(trainLoader):
if (batch_idx + 1) % 10000 == 0:
gc.collect()
start_time = time.time()
net.train()
inputs, positions, token_types, labels, masks, batch_seen, batch_similar, batch_unseen, batch_source = batch_data
inputs = inputs[0].cuda()
positions = positions[0].cuda()
token_types = token_types[0].cuda()
labels = labels[0].cuda()
masks = masks[0].cuda()
total_seen += batch_seen
total_similar += batch_similar
total_unseen += batch_unseen
total_source += batch_source
n_token = int((labels.data != 0).data.sum())
predicts = net(inputs, positions, token_types, masks)
loss = lossFunc(predicts, labels, n_token).sum()
Q.append(float(loss))
if len(Q) > 200:
Q.pop(0)
loss_avg = sum(Q) / len(Q)
optimizer.zero_grad()
loss.backward()
optimizer.step()
LOG.log('Epoch %2d, Batch %6d, Loss %9.6f, Average Loss %9.6f, Time %9.6f' % (
epoch_idx + 1, batch_idx + 1, loss, loss_avg, time.time() - start_time))
# Checkpoints
idx = epoch_idx * trainSet.__len__() + batch_idx + 1
if (idx >= options['training']['checkingPoints']['checkMin']) and (
idx % options['training']['checkingPoints']['checkFreq'] == 0):
if config.do_eval:
vloss = 0
total_tokens = 0
for bid, batch_data in enumerate(validLoader):
inputs, positions, token_types, labels, masks, batch_seen, batch_similar, batch_unseen, batch_source = batch_data
inputs = inputs[0].cuda()
positions = positions[0].cuda()
token_types = token_types[0].cuda()
labels = labels[0].cuda()
masks = masks[0].cuda()
n_token = int((labels.data != config.PAD).data.sum())
with torch.no_grad():
net.eval()
predicts = net(inputs, positions, token_types, masks)
vloss += float(lossFunc(predicts, labels).sum())
total_tokens += n_token
vloss /= total_tokens
is_best = vloss < best_vloss
best_vloss = min(vloss, best_vloss)
LOG.log('CheckPoint: Validation Loss %11.8f, Best Loss %11.8f' % (vloss, best_vloss))
if is_best:
LOG.log('Best Model Updated')
save_check_point({
'epoch': epoch_idx + 1,
'batch': batch_idx + 1,
'options': options,
'config': config,
'state_dict': net.state_dict(),
'best_vloss': best_vloss},
is_best,
path=config.save_path,
fileName='latest.pth.tar'
)
counter = 0
else:
counter += options['training']['checkingPoints']['checkFreq']
if counter >= options['training']['stopConditions']['rateReduce_bound']:
counter = 0
for param_group in optimizer.param_groups:
lr_ = param_group['lr']
param_group['lr'] *= 0.55
_lr = param_group['lr']
LOG.log('Reduce Learning Rate from %11.8f to %11.8f' % (lr_, _lr))
LOG.log('Current Counter = %d' % (counter))
else:
save_check_point({
'epoch': epoch_idx + 1,
'batch': batch_idx + 1,
'options': options,
'config': config,
'state_dict': net.state_dict(),
'best_vloss': 1e99},
False,
path=config.save_path,
fileName='checkpoint_Epoch' + str(epoch_idx + 1) + '_Batch' + str(batch_idx + 1) + '.pth.tar'
)
LOG.log('CheckPoint Saved!')
if options['training']['checkingPoints']['everyEpoch']:
save_check_point({
'epoch': epoch_idx + 1,
'batch': batch_idx + 1,
'options': options,
'config': config,
'state_dict': net.state_dict(),
'best_vloss': 1e99},
False,
path=config.save_path,
fileName='checkpoint_Epoch' + str(epoch_idx + 1) + '.pth.tar'
)
LOG.log('Epoch Finished.')
LOG.log('Total Seen: %d, Total Unseen: %d, Total Similar: %d, Total Source: %d.' % (total_seen, total_unseen, total_similar, total_source))
gc.collect()
def translate(Answers, Tokenizer):
tokens = Tokenizer.convert_ids_to_tokens(Answers[:-1])
tokens = [token.replace('##', '') if token.startswith('##') else ' ' + token for token in tokens]
return "".join(tokens)[1:]
def test(config):
Best_Model = torch.load(config.test_model)
Tokenizer = BertTokenizer.from_pretrained(config.model)
f_in = open(config.inputFile, 'r')
net = BertForMaskedLM.from_pretrained(config.model)
# When loading from a model not trained from DataParallel
#net.load_state_dict(Best_Model['state_dict'])
#net.eval()
if torch.cuda.is_available():
net = net.cuda(0)
if config.dataParallel:
net = DataParallelModel(net)
# When loading from a model trained from DataParallel
net.load_state_dict(Best_Model['state_dict'])
net.eval()
mySearcher = Searcher(net, config)
f_top1 = open('summary' + config.suffix + '.txt', 'w', encoding='utf-8')
f_topK = open('summary' + config.suffix + '.txt.' + str(config.answer_size), 'w', encoding='utf-8')
ed = '\n------------------------\n'
for idx, line in enumerate(f_in):
source_ = line.strip().split()
source = Tokenizer.tokenize(line.strip())
mapping = mapping_tokenize(source_, source)
source = Tokenizer.convert_tokens_to_ids(source)
print(idx)
print(detokenize(translate(source, Tokenizer), mapping), end=ed)
l_pred = mySearcher.length_Predict(source)
Answers = mySearcher.search(source)
baseline = sum(Answers[0][0])
if config.reranking_method == 'none':
Answers = sorted(Answers, key=lambda x: sum(x[0]))
elif config.reranking_method == 'length_norm':
Answers = sorted(Answers, key=lambda x: length_norm(x[0]))
elif config.reranking_method == 'bounded_word_reward':
Answers = sorted(Answers, key=lambda x: bounded_word_reward(x[0], config.reward, l_pred))
elif config.reranking_method == 'bounded_adaptive_reward':
Answers = sorted(Answers, key=lambda x: bounded_adaptive_reward(x[0], x[2], l_pred))
texts = [detokenize(translate(Answers[k][1], Tokenizer), mapping) for k in range(len(Answers))]
if baseline != sum(Answers[0][0]):
print('Reranked!')
print(texts[0], end=ed)
print(texts[0], file=f_top1)
print(len(texts), file=f_topK)
for i in range(len(texts)):
print(Answers[i][0], file=f_topK)
print(texts[i], file=f_topK)
f_top1.close()
f_topK.close()
def datasetBuilding(config):
LOG.log('Building Dataset Setting')
settingPath = "settings/dataset/newData.json"
data = {
"name":"newData",
"method":"build",
"max_input_len": 100,
"max_output_len": 50,
"match": True,
"Parts":
{
"train":
{
"name":"train",
"path":config.train_prefix,
"sorted": True,
"shuffled": False,
},
"valid":
{
"name":"valid",
"path":config.valid_prefix,
"sorted": True,
"shuffled": False
}
}
}
saveToJson(settingPath, data)
return settingPath
def takeEmbedding():
net = BertForMaskedLM.from_pretrained('bert-base-uncased')
embedding = net.bert.embeddings.word_embeddings
return embedding
def argLoader():
parser = argparse.ArgumentParser()
# Options Setting
parser.add_argument('--dataset', type=str, default='gigaword')
parser.add_argument('--data_part', type=str, default='test')
# Device Setting
parser.add_argument('--dataLoader_workers', type=int, default=1)
parser.add_argument('--device', type=int, default=0)
# Model Saving Setting
parser.add_argument('--save_path', type=str, default='./model')
# Actions
parser.add_argument('--do_train', action='store_true', help="Whether to run training")
parser.add_argument('--do_test', action='store_true', help="Whether to run test")
# Path for Input
parser.add_argument('--inputFile', type=str, default='none')
parser.add_argument('--train_prefix', type=str, default='train')
parser.add_argument('--valid_prefix', type=str, default='valid')
# Learning Parameters
parser.add_argument('--prob_src', type=float, default=0.1)
parser.add_argument('--prob_tgt', type=float, default=0.9)
parser.add_argument('--lRate', type=float, default=4e-5)
parser.add_argument('--pad_idx', type=int, default=0)
parser.add_argument('--label_smoothing', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=8)
# Network Parameters
parser.add_argument('--n_layers', type=int, default=12)
parser.add_argument('--d_model', type=int, default=512)
parser.add_argument('--n_head', type=int, default=12)
parser.add_argument('--d_ff', type=int, default=1024)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--n_vocab', type=int, default=30522)
parser.add_argument('--max_len', type=int, default=5000)
parser.add_argument('--n_token_type', type=int, default=2)
parser.add_argument('--hidden_act', type=str, default='relu')
parser.add_argument('--mode', type=int, default=1)
parser.add_argument('--diff_src', action='store_true', help="Whether to use different encoder hiddens")
# Training parameters
parser.add_argument('--loss_mode', type=int, default=0)
parser.add_argument('--dataParallel', action='store_true', help="Whether dataParallel or not.")
# Which Portion to Use
parser.add_argument('--seen_prob', type=float, default=1.0)
parser.add_argument('--similar_prob', type=float, default=1.0)
parser.add_argument('--unseen_prob', type=float, default=1.0)
parser.add_argument('--similar_threshold', type=float, default=1.0)
# Pretrained model
parser.add_argument('--model', type=str, default='bert-base-uncased')
parser.add_argument('--PAD', type=int, default=0)
parser.add_argument('--UNK', type=int, default=100)
parser.add_argument('--CLS', type=int, default=101)
parser.add_argument('--SEP', type=int, default=102)
parser.add_argument('--MASK', type=int, default=103)
# Testing Parameters
parser.add_argument('--test_model', type=str, default='./model/model_best.pth.tar')
parser.add_argument('--search_method', type=str, default='BFS_BEAM')
parser.add_argument('--reranking_method', type=str, default='none')
parser.add_argument('--beam_size', type=int, default=5)
parser.add_argument('--cands_limit', type=int, default=100000)
parser.add_argument('--answer_size', type=int, default=5)
parser.add_argument('--gen_max_len', type=int, default=50)
parser.add_argument('--gamma_value', type=float, default=14.0)
parser.add_argument('--beta_value', type=float, default=0.5)
parser.add_argument('--reward', type=float, default=0.25)
parser.add_argument('--no_biGramTrick', action='store_true', help='Wheter do not biGramTrick')
parser.add_argument('--no_triGramTrick', action='store_true', help='Wheter do not triGramTrick')
args = parser.parse_args()
args.do_eval = True
args.biGramTrick = not args.no_biGramTrick
args.triGramTrick = not args.no_triGramTrick
embeddingFunc = takeEmbedding()
args.para = {
'seen_prob': args.seen_prob,
'similar_prob': args.similar_prob,
'unseen_prob': args.unseen_prob,
'similar_threshold': args.similar_threshold,
'embedding': embeddingFunc
}
args.suffix = '_' + args.dataset\
+ '_' + args.data_part\
+ '_' + args.search_method\
+ '_' + str(args.beam_size)\
+ '_' + str(args.answer_size)\
+ '_' + str(args.gamma_value)\
+ '_' + str(args.biGramTrick)\
+ '_' + str(args.triGramTrick)\
+ '_' + str(args.reranking_method)
if args.reranking_method == "bounded_word_reward":
args.suffix += '_' + str(args.reward)
if args.do_test:
if (args.inputFile == 'none'):
print('No testing input file. Please use "--inputFile example.txt".')
return args
args.optionFrames = {
'test': 'settings/test/test.json'
}
elif args.do_train:
if (not path.exists(args.train_prefix+'.Ndocument')) or (not path.exists(args.train_prefix + '.Nsummary')):
print('No training input file. Please use "--train_prefix train" to assign "train.Ndocument" and "train.Nsummary"')
return args
if (not path.exists(args.valid_prefix+'.Ndocument')) or (not path.exists(args.valid_prefix + '.Nsummary')):
print('No validation input file. Please use "--valid_prefix valid" to assign "valid.Ndocument" and "valid.Nsummary"')
return args
args.optionFrames = {}
args.optionFrames['dataset'] = datasetBuilding(args)
args.optionFrames['training'] = "settings/training/gigaword_" + str(args.batch_size) + ".json"
print(args)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
return args
def main():
args = argLoader()
if args.device:
torch.cuda.set_device(args.device)
print('CUDA', torch.cuda.current_device())
if args.do_train:
train(args)
elif args.do_test:
test(args)
if __name__ == '__main__':
main()