-
-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathvec2.v
417 lines (350 loc) · 10.3 KB
/
vec2.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// Copyright(C) 2020-2024 Lars Pontoppidan. All rights reserved.
// Use of this source code is governed by an MIT license file distributed with this software package
module vec
import math
pub const vec_epsilon = f32(10e-7)
// Vec2[T] is a generic struct representing a vector in 2D space.
pub struct Vec2[T] {
pub mut:
x T
y T
}
// vec2[T] returns a `Vec2` of type `T`, with `x` and `y` fields set.
pub fn vec2[T](x T, y T) Vec2[T] {
return Vec2[T]{
x: x
y: y
}
}
// zero sets the `x` and `y` fields to 0.
pub fn (mut v Vec2[T]) zero() {
v.x = 0
v.y = 0
}
// one sets the `x` and `y` fields to 1.
pub fn (mut v Vec2[T]) one() {
v.x = 1
v.y = 1
}
// copy returns a copy of this vector.
pub fn (v Vec2[T]) copy() Vec2[T] {
return Vec2[T]{v.x, v.y}
}
// from sets the `x` and `y` fields from `u`.
pub fn (mut v Vec2[T]) from(u Vec2[T]) {
v.x = u.x
v.y = u.y
}
// from_vec3 sets the `x` and `y` fields from `u`.
pub fn (mut v Vec2[T]) from_vec3[U](u Vec3[U]) {
v.x = T(u.x)
v.y = T(u.y)
}
// as_vec3 returns a Vec3 with `x` and `y` fields set from `v`, `z` is set to 0.
pub fn (v Vec2[T]) as_vec3[T]() Vec3[T] {
return Vec3[T]{v.x, v.y, 0}
}
// from_vec4 sets the `x` and `y` fields from `u`.
pub fn (mut v Vec2[T]) from_vec4[U](u Vec4[U]) {
v.x = T(u.x)
v.y = T(u.y)
}
// as_vec4 returns a Vec4 with `x` and `y` fields set from `v`, `z` and `w` is set to 0.
pub fn (v Vec2[T]) as_vec4[T]() Vec4[T] {
return Vec4[T]{v.x, v.y, 0, 0}
}
//
// Addition
//
// + returns the resulting vector of the addition of `v` and `u`.
@[inline]
pub fn (v Vec2[T]) + (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x + u.x, v.y + u.y}
}
// add returns the resulting vector of the addition of `v` + `u`.
pub fn (v Vec2[T]) add(u Vec2[T]) Vec2[T] {
return v + u
}
// add_scalar returns the resulting vector of the addition of the `scalar` value.
pub fn (v Vec2[T]) add_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x + T(scalar), v.y + T(scalar)}
}
// plus adds vector `u` to the vector.
pub fn (mut v Vec2[T]) plus(u Vec2[T]) {
v.x += u.x
v.y += u.y
}
// plus_scalar adds the scalar `scalar` to the vector.
pub fn (mut v Vec2[T]) plus_scalar[U](scalar U) {
v.x += T(scalar)
v.y += T(scalar)
}
//
// Subtraction
//
// - returns the resulting vector of the subtraction of `v` and `u`.
@[inline]
pub fn (v Vec2[T]) - (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x - u.x, v.y - u.y}
}
// sub returns the resulting vector of the subtraction of `v` - `u`.
pub fn (v Vec2[T]) sub(u Vec2[T]) Vec2[T] {
return v - u
}
// sub_scalar returns the resulting vector of the subtraction of the `scalar` value.
pub fn (v Vec2[T]) sub_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x - T(scalar), v.y - T(scalar)}
}
// subtract subtracts vector `u` from the vector.
pub fn (mut v Vec2[T]) subtract(u Vec2[T]) {
v.x -= u.x
v.y -= u.y
}
// subtract_scalar subtracts the scalar `scalar` from the vector.
pub fn (mut v Vec2[T]) subtract_scalar[U](scalar U) {
v.x -= T(scalar)
v.y -= T(scalar)
}
//
// Multiplication
//
// * returns the resulting vector of the multiplication of `v` and `u`.
@[inline]
pub fn (v Vec2[T]) * (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x * u.x, v.y * u.y}
}
// mul returns the resulting vector of the multiplication of `v` * `u`.
pub fn (v Vec2[T]) mul(u Vec2[T]) Vec2[T] {
return v * u
}
// mul_scalar returns the resulting vector of the multiplication of the `scalar` value.
pub fn (v Vec2[T]) mul_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x * T(scalar), v.y * T(scalar)}
}
// multiply multiplies the vector with `u`.
pub fn (mut v Vec2[T]) multiply(u Vec2[T]) {
v.x *= u.x
v.y *= u.y
}
// multiply_scalar multiplies the vector with `scalar`.
pub fn (mut v Vec2[T]) multiply_scalar[U](scalar U) {
v.x *= T(scalar)
v.y *= T(scalar)
}
//
// Division
//
// / returns the resulting vector of the division of `v` and `u`.
@[inline]
pub fn (v Vec2[T]) / (u Vec2[T]) Vec2[T] {
return Vec2[T]{v.x / u.x, v.y / u.y}
}
// div returns the resulting vector of the division of `v` / `u`.
pub fn (v Vec2[T]) div(u Vec2[T]) Vec2[T] {
return v / u
}
// div_scalar returns the resulting vector of the division by the `scalar` value.
pub fn (v Vec2[T]) div_scalar[U](scalar U) Vec2[T] {
return Vec2[T]{v.x / T(scalar), v.y / T(scalar)}
}
// divide divides the vector by `u`.
pub fn (mut v Vec2[T]) divide(u Vec2[T]) {
v.x /= u.x
v.y /= u.y
}
// divide_scalar divides the vector by `scalar`.
pub fn (mut v Vec2[T]) divide_scalar[U](scalar U) {
v.x /= T(scalar)
v.y /= T(scalar)
}
//
// Utility
//
// magnitude returns the magnitude, also known as the length, of the vector.
pub fn (v Vec2[T]) magnitude() T {
if v.x == 0 && v.y == 0 {
return T(0)
}
$if T is f64 {
return math.sqrt((v.x * v.x) + (v.y * v.y))
} $else {
return T(math.sqrt(f64(v.x * v.x) + f64(v.y * v.y)))
}
}
// magnitude_x returns the magnitude, also known as the length, of the 1D vector field x, y is ignored.
pub fn (v Vec2[T]) magnitude_x() T {
return T(math.sqrt(v.x * v.x))
}
// magnitude_x returns the magnitude, also known as the length, of the 1D vector field y, x is ignored.
pub fn (v Vec2[T]) magnitude_y() T {
return T(math.sqrt(v.y * v.y))
}
// dot returns the dot product of `v` and `u`.
pub fn (v Vec2[T]) dot(u Vec2[T]) T {
return (v.x * u.x) + (v.y * u.y)
}
// cross returns the cross product of `v` and `u`.
pub fn (v Vec2[T]) cross(u Vec2[T]) T {
return (v.x * u.y) - (v.y * u.x)
}
// unit returns the unit vector.
// unit vectors always have a magnitude, or length, of exactly 1.
pub fn (v Vec2[T]) unit() Vec2[T] {
m := v.magnitude()
return Vec2[T]{v.x / m, v.y / m}
}
// perp_cw returns the clockwise, or "left-hand", perpendicular vector of this vector.
pub fn (v Vec2[T]) perp_cw() Vec2[T] {
return Vec2[T]{v.y, -v.x}
}
// perp_ccw returns the counter-clockwise, or "right-hand", perpendicular vector of this vector.
pub fn (v Vec2[T]) perp_ccw() Vec2[T] {
return Vec2[T]{-v.y, v.x}
}
// perpendicular returns the `u` projected perpendicular vector to this vector.
pub fn (v Vec2[T]) perpendicular(u Vec2[T]) Vec2[T] {
return v - v.project(u)
}
// project returns the projected vector.
pub fn (v Vec2[T]) project(u Vec2[T]) Vec2[T] {
percent := v.dot(u) / u.dot(v)
return u.mul_scalar(percent)
}
// rotate_around_cw returns the vector `v` rotated *clockwise* `radians` around an origin vector `o` in Cartesian space.
pub fn (v Vec2[T]) rotate_around_cw(o Vec2[T], radians f64) Vec2[T] {
return v.rotate_around_ccw(o, -radians)
}
// rotate_around_ccw returns the vector `v` rotated *counter-clockwise* `radians` around an origin vector `o` in Cartesian space.
pub fn (v Vec2[T]) rotate_around_ccw(o Vec2[T], radians f64) Vec2[T] {
s := math.sin(radians)
c := math.cos(radians)
dx := v.x - o.x
dy := v.y - o.y
return Vec2[T]{
x: T(c * dx - s * dy + o.x)
y: T(s * dx + c * dy + o.y)
}
}
// eq returns a bool indicating if the two vectors are equal.
@[inline]
pub fn (v Vec2[T]) eq(u Vec2[T]) bool {
return v.x == u.x && v.y == u.y
}
// eq_epsilon returns a bool indicating if the two vectors are equal within the module `vec_epsilon` const.
pub fn (v Vec2[T]) eq_epsilon(u Vec2[T]) bool {
return v.eq_approx[T, f32](u, vec_epsilon)
}
// eq_approx returns whether these vectors are approximately equal within `tolerance`.
pub fn (v Vec2[T]) eq_approx[T, U](u Vec2[T], tolerance U) bool {
diff_x := math.abs(v.x - u.x)
diff_y := math.abs(v.y - u.y)
if diff_x <= tolerance && diff_y <= tolerance {
return true
}
max_x := math.max(math.abs(v.x), math.abs(u.x))
max_y := math.max(math.abs(v.y), math.abs(u.y))
if diff_x < max_x * tolerance && diff_y < max_y * tolerance {
return true
}
return false
}
// is_approx_zero returns whether this vector is equal to zero within `tolerance`.
pub fn (v Vec2[T]) is_approx_zero(tolerance T) bool {
if math.abs(v.x) <= tolerance && math.abs(v.y) <= tolerance {
return true
}
return false
}
// eq_scalar returns a bool indicating if the `x` and `y` fields both equals `scalar`.
pub fn (v Vec2[T]) eq_scalar[U](scalar U) bool {
return v.x == T(scalar) && v.y == scalar
}
// distance returns the distance to the vector `u`.
pub fn (v Vec2[T]) distance(u Vec2[T]) T {
$if T is f64 {
return math.sqrt((v.x - u.x) * (v.x - u.x) + (v.y - u.y) * (v.y - u.y))
} $else {
return T(math.sqrt(f64(v.x - u.x) * f64(v.x - u.x) + f64(v.y - u.y) * f64(v.y - u.y)))
}
}
// manhattan_distance returns the Manhattan Distance to the vector `u`.
pub fn (v Vec2[T]) manhattan_distance(u Vec2[T]) T {
return math.abs(v.x - u.x) + math.abs(v.y - u.y)
}
// angle_between returns the angle in radians to the vector `u`.
pub fn (v Vec2[T]) angle_between(u Vec2[T]) T {
$if T is f64 {
return math.atan2(v.cross(u), v.dot(u))
} $else {
return T(math.atan2(f64(v.cross(u)), f64(v.dot(u))))
}
}
// angle_towards returns the angle in radians between the horizontal axis,
// and a line passing through the first and second point, as if the first point
// was at the center of the coordinate system.
pub fn (p1 Vec2[T]) angle_towards(p2 Vec2[T]) T {
$if T is f64 {
return math.atan2(p2.y - p1.y, p2.x - p1.x)
} $else {
return T(math.atan2(f64(p2.y) - f64(p1.y), f64(p2.x) - f64(p1.x)))
}
}
// angle returns the angle in radians of the vector.
pub fn (v Vec2[T]) angle() T {
$if T is f64 {
return math.atan2(v.y, v.x)
} $else {
return T(math.atan2(f64(v.y), f64(v.x)))
}
}
// abs sets `x` and `y` field values to their absolute values.
pub fn (mut v Vec2[T]) abs() {
if v.x < 0 {
v.x = math.abs(v.x)
}
if v.y < 0 {
v.y = math.abs(v.y)
}
}
// clean returns a vector with all fields of this vector set to zero (0) if they fall within `tolerance`.
pub fn (v Vec2[T]) clean[U](tolerance U) Vec2[T] {
mut r := v.copy()
if math.abs(v.x) < tolerance {
r.x = 0
}
if math.abs(v.y) < tolerance {
r.y = 0
}
return r
}
// clean_tolerance sets all fields to zero (0) if they fall within `tolerance`.
pub fn (mut v Vec2[T]) clean_tolerance[U](tolerance U) {
if math.abs(v.x) < tolerance {
v.x = 0
}
if math.abs(v.y) < tolerance {
v.y = 0
}
}
// inv returns the inverse, or reciprocal, of the vector.
pub fn (v Vec2[T]) inv() Vec2[T] {
return Vec2[T]{
x: if v.x != 0 { T(1) / v.x } else { 0 }
y: if v.y != 0 { T(1) / v.y } else { 0 }
}
}
// normalize normalizes the vector.
pub fn (v Vec2[T]) normalize() Vec2[T] {
m := v.magnitude()
if m == 0 {
return vec2[T](0, 0)
}
return Vec2[T]{
x: v.x * (1 / m)
y: v.y * (1 / m)
}
}
// sum returns a sum of all the fields.
pub fn (v Vec2[T]) sum() T {
return v.x + v.y
}