+$$ \begin{aligned} z'(t) &= \lim_{dt \to 0} \frac{f(x(t+dt), y(t+dt)) - f(x(t), y(t))}{dt} \\\\ &= \lim_{dt \to 0} \frac{ f(x(t+dt), y(t+dt)) - f(x(t+dt), y(t)) + f(x(t+dt), y(t)) - f(x(t), y(t)) }{dt} \\\\ &= \lim_{dt \to 0} \frac{f(x(t+dt), y(t+dt)) - f(x(t+dt), y(t))}{dt} + \lim_{dt \to 0} \frac{f(x(t+dt), y(t)) - f(x(t), y(t))}{dt} \\\\ &= \lim_{dt \to 0} \frac{f(x(t+dt), y(t+dt)) - f(x(t+dt), y(t))} {y(t+dt) - y(t)} \times \frac{y(t+dt) - y(t)}{dt} \\\\ &+ \lim_{dt \to 0} \frac{f(x(t+dt), y(t)) - f(x(t), y(t))} {x(x+dt) - x(t)} \times \frac{x(x+dt) - x(t)}{dt} \\\\ &\doteq \lim_{dt \to 0} \frac{f(x(t+dt), y(t) + \Delta y) - f(x(t+dt), y(t))} {\Delta y} \times \frac{y(t+dt) - y(t)}{dt} \\\\ &+ \lim_{dt \to 0} \frac{f(x(t) + \Delta x, y(t)) - f(x(t), y(t))} {\Delta x} \times \frac{x(x+dt) - x(t)}{dt} \\\\ &= \frac{\partial z}{\partial y} \times \frac{\partial y}{\partial t} + \frac{\partial z}{\partial x} \times \frac{\partial x}{\partial t} \end{aligned} $$
0 commit comments