在计算机图形学领域中,一直存在两种为图片上色的方向:数据驱动的自动上色和用户交互的引导上色。
2016 ECCV 里加州大学伯克利分校的一篇文章介绍的方法。这个方法与之前方法的不同之处在于,它把照片上色看成是一个分类问题——预测三百多种颜色在图片每一个像素点上的概率分布。这种方法tackle了这个任务本身的不确定性,例如,当你看到一个黑白的苹果时,你可能会觉得它是红色的,但如果这个苹果是青色的,其实也并没有多少违和感。大家也可以到作者的网站网站来试用他们的demo。 https://richzhang.github.io/colorization/
Github 地址:https://github.com/pavelgonchar/colornet
这种方法是由 Levin 等人在 2004 年开创的,用户通过彩色画笔在灰度图像中进行引导性上色,随后优化算法会生成符合用户逻辑的上色结果。这种方法可以保留人工上色的部分性质,因而经常会有绝佳的表现,但往往需要密集的用户交互次数(有时超过五十次)。随着技术进步,现在的交互次数慢慢减少。
Image Type | Paper | Source | Code/Project Link |
---|---|---|---|
Manga | Manga colorization | SIGGRAPH 2006 | |
Line art / Sketch | Outline Colorization through Tandem Adversarial Networks | 1704.08834 | [Demo] [code] |
Line art / Sketch | Auto-painter: Cartoon Image Generation from Sketch by Using Conditional Generative Adversarial Networks | 1705.01908 | [code] |
Natural Gray-Scale | Real-Time User-Guided Image Colorization with Learned Deep Priors | SIGGRAPH 2017 | [project] [code1] [code2] |
Sketch | Scribbler: Controlling Deep Image Synthesis with Sketch and Color | CVPR 2017 | |
Natural Gray-Scale | Interactive Deep Colorization Using Simultaneous Global and Local Inputs (also palette based) | ICASSP 2019 |
UC Berkeley SIGGRAPH 2017 论文链接:https://arxiv.org/abs/1705.02999 Demo 和代码链接:https://richzhang.github.io/ideepcolor/
Image Type | Paper | Source | Code/Project Link |
---|---|---|---|
Line art | Style2paints V1 : Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN | ACPR 2017 | [Code] |
Manga | Comicolorization: Semi-Automatic Manga Colorization (also palette based) | SIGGRAPH Asia 2017 | [code] |
Sketch | TextureGAN: Controlling Deep Image Synthesis with Texture Patches | CVPR 2018 | [code] |
Natural Gray-Scale | Deep Exemplar-based Colorization | SIGGRAPH 2018 | [code] |
Natural Gray-Scale | Example-Based Colourization Via Dense Encoding Pyramids (also palette based) | Pacific Graphics 2018 | [code] |
Natural Gray-Scale | A Superpixel-based Variational Model for Image Colorization | TVCG 2019 | |
Natural Gray-Scale | Automatic Example-based Image Colourisation using Location-Aware Cross-Scale Matching | TIP 2019 |
Image Type | Paper | Source | Code/Project Link |
---|---|---|---|
Natural Image | Palette-based Photo Recoloring | SIGGRAPH 2015 | [project] |
Manga | Comicolorization: Semi-Automatic Manga Colorization (also reference based) | SIGGRAPH Asia 2017 | [code] |
Natural Gray-Scale | Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation (also text based) | ECCV 2018 | [code] |
Natural Gray-Scale | Example-Based Colourization Via Dense Encoding Pyramids (also reference based) | Pacific Graphics 2018 | [code] |
Natural Gray-Scale | Interactive Deep Colorization Using Simultaneous Global and Local Inputs (also strokes based) | ICASSP 2019 |
Image Type | Paper | Source | Code/Project Link |
---|---|---|---|
Natural Gray-Scale / Sketch | Language-Based Image Editing with Recurrent Attentive Models | CVPR 2018 | [code] |
Natural Gray-Scale | Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation (also palette based) | ECCV 2018 | [code] |
Scene Sketch | LUCSS: Language-based User-customized Colorization of Scene Sketches | 1808.10544 | [code] |
Paper | Source | Code/Project Link |
---|---|---|
Fully Automatic Video Colorization with Self-Regularization and Diversity | CVPR 2019 |
Paper | Source | Code/Project Link |
---|---|---|
Switchable Temporal Propagation Network | ECCV 2018 | |
Tracking Emerges by Colorizing Videos | ECCV 2018 | [code] |
Deep Exemplar-based Video Colorization | CVPR 2019 |
DeOldify: Colorizing and Restoring Old Images and Videos with Deep Learning
老照片上色, 人脸处理,港星老照片:“你我当年”