-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrank_aml.py
367 lines (318 loc) · 15.7 KB
/
rank_aml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import collections
import itertools
import os, sys
import math
import torch
import numpy
from fairseq import data, distributed_utils, options, progress_bar, tasks, utils
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
import multiprocessing
multiprocessing.set_start_method('spawn', True)
def main(args):
# we should not do this!
'''
if args.max_tokens is None:
args.max_tokens = 6000
'''
utils.xpprint(args)
if not torch.cuda.is_available():
raise NotImplementedError('Training on CPU is not supported')
torch.cuda.set_device(args.device_id)
torch.manual_seed(args.seed)
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(args)
utils.xprintln('setup task done!')
# Load dataset splits
load_dataset_splits(args, task, ['train'])
valid_dataset = args.valid_subset.split(',')
load_dataset_splits(args, task, valid_dataset, shuffle=False)
utils.xprintln('load dataset done!')
if args.task.startswith('extractive_summarization'):
if distributed_utils.is_master(args):
from sum_eval import MultiProcSumEval
sum_eval_pool = MultiProcSumEval(args.ncpu_eval)
sum_valid_pool_params = dict(article_file=args.raw_valid + '.article',
summary_file=args.raw_valid + '.summary',
entity_map_file=None,
length=-1, eval_type='predict',
topk=args.topk_sent_eval, rerank=False, with_m=False,
cmd='-a -c 95 -m -n 4 -w 1.2',
trigram_block=args.trigram_block,)
sum_test_pool_params = dict(article_file=args.raw_test + '.article',
summary_file=args.raw_test + '.summary',
entity_map_file=None,
length=-1, eval_type='predict',
topk=args.topk_sent_eval, rerank=False, with_m=False,
cmd='-a -c 95 -m -n 4 -w 1.2',
trigram_block=args.trigram_block,)
sum_pool_params = dict(valid=sum_valid_pool_params, test=sum_test_pool_params)
def make_params(default_dict, result_file, out_rouge_file, rerank=False, with_m=False):
para_dict = dict(default_dict)
para_dict['result_file'] = result_file
para_dict['out_rouge_file'] = out_rouge_file
para_dict['rerank'] = rerank
para_dict['with_m'] = with_m
return para_dict
# Build model and criterion
model = task.build_model(args)
criterion = task.build_criterion(args)
print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))
# print(model)
import sys
sys.stdout.flush()
# if summarization try to load pretrained model
# if args.task.startswith('extractive_summarization') or args.task == 'pretrain_document_modeling':
# # assume this is a single GPU program
if args.init_from_pretrained_doc_model:
task.load_pretrained_model(model, args.pretrained_doc_model_path)
sys.stdout.flush()
# Build trainer
trainer = Trainer(args, task, model, criterion)
print('| training on {} GPUs'.format(args.distributed_world_size))
print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
args.max_tokens,
args.max_sentences,
))
# Initialize dataloader
max_positions = trainer.get_model().max_positions()
epoch_itr = trainer.get_train_iterator(epoch=0, load_dataset=False)
# Load the latest checkpoint if one is available
# load_checkpoint(args, trainer, epoch_itr)
# make sure training from a different checkpoint will use different random seed
cur_dataset = task.dataset('train')
if hasattr(cur_dataset, 'rng'):
print('epoch ', epoch_itr.epoch)
cur_dataset.rng = numpy.random.RandomState(args.seed+epoch_itr.epoch)
# Train until the learning rate gets too small
max_epoch = args.max_epoch or math.inf
max_update = args.max_update or math.inf
lr = trainer.get_lr()
train_meter = StopwatchMeter()
train_meter.start()
valid_losses = [None]
valid_subsets = args.valid_subset.split(',')
for alpha in range(10, 9, -1):
# train for one epoch
# train(args, trainer, task, epoch_itr)
epoch_itr.next_epoch_itr()
if epoch_itr.epoch % args.validate_interval == 0:
if args.task.startswith('extractive_summarization'):
if distributed_utils.is_master(args):
validate_metric(args, trainer, task, epoch_itr, valid_subsets)
# not compute rouge on the aml
# for subset in valid_subsets:
# print(subset)
# valid_result_file = os.path.join(args.save_dir, '{}.{}.txt'.format(epoch_itr.epoch, subset))
# print(valid_result_file)
# valid_out_file = os.path.join(args.save_dir, '{}.{}'.format(epoch_itr.epoch, subset))
# sum_eval_pool.add_eval_job(**make_params(sum_pool_params[subset], valid_result_file, valid_out_file, False, False))
# # sum_eval_pool.add_eval_job(**make_params(sum_pool_params[subset], valid_result_file, valid_out_file, True, False))
def init_output_file(out_put_file, dictionary):
fout = open(out_put_file, 'w', encoding='utf8')
# firstly, output dictionary information
fout.write('%d\n'%len(dictionary))
for i in range(len(dictionary)):
fout.write('{}\t{}\n'.format(dictionary[i], i))
fout.flush()
return fout
def validate_metric(args, trainer, task, epoch_itr, subsets):
# when training with distributed trainer, only one of them (the one args.distributed_rank == 0) is working ...
print('args.distributed_rank', args.distributed_rank)
print('args.distributed_world_size', args.distributed_world_size)
if not distributed_utils.is_master(args):
return
"""Evaluate the model on the validation set(s) and return the losses."""
for subset in subsets:
model_output_placeholder = os.path.join(args.save_dir, '{}.{}.txt'.format('placeholder', subset))
model_output_file_list = []
# fout = open(model_output_file, 'w', encoding='utf8')
# # firstly, output dictionary information
# fout.write('%d\n'%len(task.target_dictionary))
# for i in range(len(task.target_dictionary)):
# fout.write('{}\t{}\n'.format(task.target_dictionary[i], i))
# fout.flush()
# Initialize data iterator
itr = task.get_batch_iterator(
dataset=task.dataset(subset),
max_tokens=args.max_tokens_valid,
max_sentences=args.max_sentences_valid,
# max_positions=trainer.get_model().max_positions(),
max_positions=None,
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=8,
seed=args.seed,
num_shards=1,
shard_id=0,
).next_epoch_itr(shuffle=False)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch,
prefix='valid on \'{}\' subset'.format(subset),
no_progress_bar='simple'
)
cnt = 0
for sample in progress:
preds = []
scores = []
trainer.model.eval()
sample = utils.move_to_cuda(sample)
# net_output = trainer.model(args.lam1, args.lam2, args.transpose_method, **sample['net_input'])
with torch.no_grad():
net_output = trainer.model(**sample['net_input'])
# probs = trainer.model.get_normalized_probs(net_output, log_probs=False)
# _, pred = probs.max(2)
if isinstance(net_output[0], list):
if len(model_output_file_list) < len(net_output[0]):
for idx, sub_net_output in enumerate(net_output[0]):
model_output_file_list.append(init_output_file(model_output_placeholder.replace('placeholder', str(idx)), task.target_dictionary))
for sub_net_output, sub_score in zip(net_output[0], net_output[1]):
preds.append(sub_net_output)
scores.append(sub_score)
else:
if len(model_output_file_list) == 0:
model_output_file_list.append(init_output_file(model_output_placeholder.replace('placeholder', '1'), task.target_dictionary))
preds.append(net_output[0])
scores.append(net_output[1])
if sample.get('target', None) is not None:
target = trainer.model.get_targets(sample, net_output)
if target.size(1) > preds[0].size(1):
target = target[:, : preds[0].size(1)]
else:
target = torch.ones_like(preds[0])
target = torch.where(preds[0]==0, torch.zeros_like(preds[0]), target.int())
assert len(preds) == len(scores) == len(model_output_file_list)
for pred, score, fout in zip(preds, scores, model_output_file_list):
for i in range(pred.size(0)):
labels = []
pred_labels = []
pred_dists = []
pred_scores = []
for j in range(pred.size(1)):
if target[i, j] != task.target_dictionary.pad():
labels.append( task.target_dictionary[target[i, j]] )
pred_labels.append( task.target_dictionary[pred[i, j]] )
pred_scores.append( str(round(score[i, j].item(), 5)) )
# pred_dists.append( ' '.join( map(lambda x: str(x.item()), probs[i, j]) ) )d
else:
break
fout.write('True Labels:\t%s\n'%' '.join(labels))
fout.write('Predicted Labels:\t%s\n'%' '.join(pred_labels))
fout.write('Score:\t%s\n'%' '.join(pred_scores))
fout.write('Predicted Distri:\t%s\n'%' | '.join(pred_dists))
fout.flush()
assert cnt == sample['id'][0]
cnt += sample['id'].shape[0]
for fout in model_output_file_list:
fout.close()
utils.xprintln('valid metric %s done!'%fout.name)
def save_checkpoint(args, trainer, epoch_itr, val_loss):
if args.no_save or not distributed_utils.is_master(args):
return
epoch = epoch_itr.epoch
end_of_epoch = epoch_itr.end_of_epoch()
updates = trainer.get_num_updates()
checkpoint_conds = collections.OrderedDict()
checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
end_of_epoch and not args.no_epoch_checkpoints and
epoch % args.save_interval == 0
)
checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
not end_of_epoch and args.save_interval_updates > 0 and
updates % args.save_interval_updates == 0
)
checkpoint_conds['checkpoint_best.pt'] = (
val_loss is not None and
(not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
)
checkpoint_conds['checkpoint_last.pt'] = True # keep this last so that it's a symlink
prev_best = getattr(save_checkpoint, 'best', val_loss)
if val_loss is not None:
save_checkpoint.best = min(val_loss, prev_best)
extra_state = {
'best': save_checkpoint.best,
'train_iterator': epoch_itr.state_dict(),
'val_loss': val_loss,
}
checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
if len(checkpoints) > 0:
for cp in checkpoints:
trainer.save_checkpoint(cp, extra_state)
if not end_of_epoch and args.keep_interval_updates > 0:
# remove old checkpoints; checkpoints are sorted in descending order
checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
for old_chk in checkpoints[args.keep_interval_updates:]:
os.remove(old_chk)
def load_checkpoint(args, trainer, epoch_itr):
"""Load a checkpoint and replay dataloader to match."""
os.makedirs(args.save_dir, exist_ok=True)
checkpoint_path = os.path.join(args.save_dir, args.restore_file)
if os.path.isfile(checkpoint_path):
extra_state = trainer.load_checkpoint(checkpoint_path)
if extra_state is not None:
# replay train iterator to match checkpoint
epoch_itr.load_state_dict(extra_state['train_iterator'])
print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
trainer.lr_step(epoch_itr.epoch)
trainer.lr_step_update(trainer.get_num_updates())
if 'best' in extra_state:
save_checkpoint.best = extra_state['best']
def load_dataset_splits(args, task, splits, shuffle=True):
for split in splits:
for k in itertools.count():
split_k = split + (str(k) if k > 0 else '')
try:
task.load_dataset(split_k, shuffle)
print('| {} {} {} examples'.format(args.data, split_k, len(task.dataset(split_k))))
except FileNotFoundError as e:
if k > 0:
break
raise e
def distributed_main(i, args, start_rank=0):
args.device_id = i
if args.distributed_rank is None: # torch.multiprocessing.spawn
args.distributed_rank = start_rank + i
main(args, init_distributed=True)
def cli_main():
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser)
# if args.distributed_init_method is None:
# distributed_utils.infer_init_method(args)
# if args.distributed_init_method is not None:
# # distributed training
# if torch.cuda.device_count() > 1 and not args.distributed_no_spawn:
# start_rank = args.distributed_rank
# args.distributed_rank = None # assign automatically
# torch.multiprocessing.spawn(
# fn=distributed_main,
# args=(args, start_rank),
# nprocs=torch.cuda.device_count(),
# )
# else:
# distributed_main(args.device_id, args)
# elif args.distributed_world_size > 1:
# # fallback for single node with multiple GPUs
# assert args.distributed_world_size <= torch.cuda.device_count()
# port = random.randint(10000, 20000)
# args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
# args.distributed_rank = None # set based on device id
# if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
# print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
# torch.multiprocessing.spawn(
# fn=distributed_main,
# args=(args, ),
# nprocs=args.distributed_world_size,
# )
# else:
# # single GPU training
main(args)
if __name__ == '__main__':
cli_main()