-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
1109 lines (860 loc) · 44.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
from time import time
import pandas
import pandas as pd
import torch.optim as optim
from collections import OrderedDict
import argparse
import logging
import os
import random
from sklearn.model_selection import KFold, StratifiedKFold
import torch.utils.data as Data
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
import copy
import torch as th
EMB_INIT_EPS = 2.0
gamma = 12.0
# --------------------------------------------initial param------------------------------------------------------------
def parse_SKGDDI_args():
parser = argparse.ArgumentParser(description="Run SKGDDI.")
parser.add_argument('--seed', type=int, default=2020,
help='Random seed.')
parser.add_argument('--data_name', nargs='?', default='DRKG',
help='Choose a dataset from {DrugBank, DRKG}')
parser.add_argument('--data_dir', nargs='?', default='data/',
help='Input data path.')
parser.add_argument('--graph_embedding_file', nargs='?', default='data/DRKG/gin_supervised_masking_embedding.npy',
help='Input data path.')
parser.add_argument('--entity_embedding_file', nargs='?', default='data/DRKG/DRKG_TransE_l2_entity.npy',
help='Input data path.')
parser.add_argument('--relation_embedding_file', nargs='?', default='data/DRKG/DRKG_TransE_l2_relation.npy',
help='Input data path.')
parser.add_argument('--use_pretrain', type=int, default=1,
help='0: No pretrain, 1: Pretrain with the learned embeddings')
parser.add_argument('--pretrain_model_path', nargs='?', default='trained_model/model.pth',
help='Path of stored model.')
parser.add_argument('--DDI_batch_size', type=int, default=2048,
help='DDI batch size.')
parser.add_argument('--kg_batch_size', type=int, default=2048,
help='KG batch size.')
parser.add_argument('--DDI_evaluate_size', type=int, default=2500,
help='KG batch size.')
parser.add_argument('-n', '--negative_sample_size', default=256, type=int)
parser.add_argument('--entity_dim', type=int, default=100,
help='User / entity Embedding size.')
parser.add_argument('--relation_dim', type=int, default=100,
help='Relation Embedding size.')
parser.add_argument('--aggregation_type', nargs='?', default='sum',
help='Specify the type of the aggregation layer from {sum, concat, pna}.')
parser.add_argument('--conv_dim_list', nargs='?', default='[64, 32, 16]',
help='Output sizes of every aggregation layer.')
parser.add_argument('--mess_dropout', nargs='?', default='[0.1, 0.1, 0.1]',
help='Dropout probability w.r.t. message dropout for each deep layer. 0: no dropout.')
parser.add_argument('--kg_l2loss_lambda', type=float, default=1e-5,
help='Lambda when calculating KG l2 loss.')
parser.add_argument('--DDI_l2loss_lambda', type=float, default=1e-5,
help='Lambda when calculating DDI l2 loss.')
parser.add_argument('--lr', type=float, default=0.0001,
help='Learning rate.')
parser.add_argument('--n_epoch', type=int, default=200,
help='Number of epoch.')
parser.add_argument('--stopping_steps', type=int, default=10,
help='Number of epoch for early stopping')
parser.add_argument('--ddi_print_every', type=int, default=1,
help='Iter interval of printing DDI loss.')
parser.add_argument('--kg_print_every', type=int, default=1,
help='Iter interval of printing KG loss.')
parser.add_argument('--evaluate_every', type=int, default=1,
help='Epoch interval of evaluating DDI.')
parser.add_argument('--multi_type', nargs='?', default='False',
help='whether task is multi-class')
parser.add_argument('--n_hidden_1', type=int, default=2048,
help='FC hidden 1 dim')
parser.add_argument('--n_hidden_2', type=int, default=2048,
help='FC hidden 2 dim')
parser.add_argument('--out_dim', type=int, default=1,
help='FC output dim: 81 or 1')
parser.add_argument('--structure_dim', type=int, default=300,
help='structure_dim')
parser.add_argument('--pre_entity_dim', type=int, default=400,
help='pre_entity_dim')
parser.add_argument('--feature_fusion', nargs='?', default='init_double',
help='feature fusion type: concat / sum / init_double')
args = parser.parse_args()
save_dir = 'trained_model/SKGDDI/epoch_200/{}/all_entitydim{}_relationdim{}_feature{}_{}_{}_lr{}_pretrain{}/'.format(
args.data_name, args.entity_dim, args.relation_dim, args.feature_fusion, args.aggregation_type,
'-'.join([str(i) for i in eval(args.conv_dim_list)]), args.lr, args.use_pretrain)
args.save_dir = save_dir
return args
# ----------------------------------------define log information--------------------------------------------------------
# create log information
def create_log_id(dir_path):
log_count = 0
file_path = os.path.join(dir_path, 'log{:d}.log'.format(log_count))
while os.path.exists(file_path):
log_count += 1
file_path = os.path.join(dir_path, 'log{:d}.log'.format(log_count))
return log_count
def logging_config(folder=None, name=None,
level=logging.DEBUG,
console_level=logging.DEBUG,
no_console=True):
if not os.path.exists(folder):
os.makedirs(folder)
for handler in logging.root.handlers:
logging.root.removeHandler(handler)
logging.root.handlers = []
logpath = os.path.join(folder, name + ".txt")
print("All logs will be saved to %s" % logpath)
logging.root.setLevel(level)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logfile = logging.FileHandler(logpath)
logfile.setLevel(level)
logfile.setFormatter(formatter)
logging.root.addHandler(logfile)
if not no_console:
logconsole = logging.StreamHandler()
logconsole.setLevel(console_level)
logconsole.setFormatter(formatter)
logging.root.addHandler(logconsole)
return folder
# -----------------------------------------loading KG data and DDI 5-fold data------------------------------------------
# loading data
class DataLoaderSKGDDI(object):
def __init__(self, args, logging, multi_type=False):
self.args = args
self.data_name = args.data_name
self.use_pretrain = args.use_pretrain
self.ddi_batch_size = args.DDI_batch_size
self.kg_batch_size = args.kg_batch_size
self.multi_type = args.multi_type
self.entity_dim = args.entity_dim
data_dir = os.path.join(args.data_dir, args.data_name)
if self.multi_type == 'True':
train_file = os.path.join(data_dir, 'multi_ddi_sift.txt')
else:
train_file = os.path.join(data_dir, 'DDI_pos_neg.txt')
if args.data_name == 'DRKG':
kg_file = os.path.join(data_dir, "train.tsv")
else:
kg_file = os.path.join(data_dir, "kg2id.txt")
self.DDI_train_data_X, self.DDI_train_data_Y, self.DDI_test_data_X, self.DDI_test_data_Y = self.load_DDI_data(
train_file)
self.statistic_ddi_data()
triples = self.read_triple(kg_file)
self.construct_triples(triples)
self.print_info(logging)
self.train_graph = None
if self.use_pretrain == 1:
self.load_pretrained_data()
def load_DDI_data(self, filename):
train_X_data = []
train_Y_data = []
test_X_data = []
test_Y_data = []
traindf = pandas.read_csv(filename, delimiter='\t', header=None)
data = traindf.values
DDI = data[:, 0:2]
# 1123100,2
print(DDI.shape)
Y = data[:, 2]
label = np.array(list(map(int, Y)))
print(DDI.shape)
print(label.shape)
kfold = KFold(n_splits=5, shuffle=True, random_state=3)
for train, test in kfold.split(DDI, label):
train_X_data.append(DDI[train])
train_Y_data.append(label[train])
test_X_data.append(DDI[test])
test_Y_data.append(label[test])
train_X = np.array(train_X_data)
train_Y = np.array(train_Y_data)
test_X = np.array(test_X_data)
test_Y = np.array(test_Y_data)
print('Loading DDI data down!')
return train_X, train_Y, test_X, test_Y
# 5-fold train data length
def statistic_ddi_data(self):
data = []
for i in range(len(self.DDI_train_data_X)):
data.append(len(self.DDI_train_data_X[i]))
self.n_ddi_train = data
def read_triple(self, path, mode='train', skip_first_line=False, format=[0, 1, 2]):
heads = []
tails = []
rels = []
print('Reading {} triples....'.format(mode))
with open(path) as f:
if skip_first_line:
_ = f.readline()
for line in f:
triple = line.strip().split('\t')
h, r, t = triple[format[0]], triple[format[1]], triple[format[2]]
try:
heads.append(int(h))
tails.append(int(t))
rels.append(int(r))
except ValueError:
print("For User Defined Dataset, both node ids and relation ids in the triplets should be int "
"other than {}\t{}\t{}".format(h, r, t))
raise
heads = np.array(heads, dtype=np.int64)
tails = np.array(tails, dtype=np.int64)
rels = np.array(rels, dtype=np.int64)
print('Finished. Read {} {} triples.'.format(len(heads), mode))
return heads, rels, tails
# load kg triple
def load_kg(self, filename):
kg_data = pd.read_csv(filename, sep='\t', names=['h', 'r', 't'], engine='python')
kg_data = kg_data.drop_duplicates()
return kg_data
def construct_triples(self, kg_data):
print("construct kg...")
src, rel, dst = kg_data
src, rel, dst = np.concatenate((src, dst)), np.concatenate((rel, rel)), np.concatenate((dst, src))
self.kg_triple = np.array(sorted(zip(src, rel, dst)))
# print(self.kg_triple.shape)
self.n_relations = max(rel) + 1
self.n_entities = max(max(src), max(dst)) + 1
self.kg_train_data = self.kg_triple
self.n_kg_train = len(self.kg_train_data)
print('construct kg down!')
def print_info(self, logging):
logging.info('n_entities: %d' % self.n_entities)
logging.info('n_relations: %d' % self.n_relations)
logging.info('n_kg_train: %d' % self.n_kg_train)
logging.info('n_ddi_train: %s' % self.n_ddi_train)
def load_pretrained_data(self):
if self.data_name == 'DrugBank':
# load pretrained KG information
transE_entity_path = 'embedding_data/entityVector_400.npz'
transE_relation_path = 'embedding_data/relationVector_400.npz'
transE_entity_data = np.load(transE_entity_path)
transE_relation_data = np.load(transE_relation_path)
transE_entity_data = transE_entity_data['embed']
transE_relation_data = transE_relation_data['embed']
# load pretrained Structure information
masking_entity_path = 'embedding_data/gin_supervised_masking_embedding.npy'
masking_entity_data = np.load(masking_entity_path)
else:
# change name by yourself.
# if self.entity_dim == 300:
# transE_entity_path = 'data/DRKG/TransE_l2_DRKG_0/DRKG_TransE_l2_entity_300.npy'
# transE_relation_path = 'data/DRKG/TransE_l2_DRKG_0/DRKG_TransE_l2_relation_300.npy'
# elif self.entity_dim == 256:
# transE_entity_path = 'ckpts/TransE_l2_DRKG_19/DRKG_TransE_l2_entity.npy'
# transE_relation_path = 'ckpts/TransE_l2_DRKG_19/DRKG_TransE_l2_relation.npy'
# elif self.entity_dim == 100:
# # 128 negative sample
# transE_entity_path = 'data/DRKG/DRKG_TransE_l2_entity.npy'
# transE_relation_path = 'data/DRKG/DRKG_TransE_l2_relation.npy'
# elif self.entity_dim == 128:
# transE_entity_path = 'data/DRKG/DRKG_TransE_l2_entity_128.npy'
# transE_relation_path = 'data/DRKG/DRKG_TransE_l2_relation_128.npy'
# elif self.entity_dim == 32:
# transE_entity_path = 'data/DRKG/32/TransE_l2_DRKG_0/DRKG_TransE_l2_entity.npy'
# transE_relation_path = 'data/DRKG/32/TransE_l2_DRKG_0/DRKG_TransE_l2_relation.npy'
# elif self.entity_dim == 64:
# transE_entity_path = 'data/DRKG/64/TransE_l2_DRKG_0/DRKG_TransE_l2_entity.npy'
# transE_relation_path = 'data/DRKG/64/TransE_l2_DRKG_0/DRKG_TransE_l2_relation.npy'
transE_entity_path = self.args.entity_embedding_file
transE_relation_path = self.args.relation_embedding_file
transE_entity_data = np.load(transE_entity_path)
transE_relation_data = np.load(transE_relation_path)
# masking_entity_path = 'data/DRKG/gin_supervised_masking_embedding.npy'
masking_entity_path = self.args.graph_embedding_file
masking_entity_data = np.load(masking_entity_path)
# apply pretrained data
self.entity_pre_embed = transE_entity_data
self.relation_pre_embed = transE_relation_data
self.structure_pre_embed = masking_entity_data
self.n_approved_drug = self.structure_pre_embed.shape[0]
print('loading pretrain data down!')
def chunkIt(seq, num):
data = []
for i in range(0, len(seq), num):
if i + num > len(seq):
data.append(seq[i:])
else:
data.append(seq[i:i + num])
return data
def early_stopping(recall_list, stopping_steps):
best_recall = max(recall_list)
best_step = recall_list.index(best_recall)
if len(recall_list) - best_step - 1 >= stopping_steps:
should_stop = True
else:
should_stop = False
return best_recall, should_stop
def save_model(all_embed, model, model_dir, current_epoch, last_best_epoch=None):
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_state_file = os.path.join(model_dir, 'model_epoch{}.pth'.format(current_epoch))
torch.save({'model_state_dict': model.state_dict(), 'epoch': current_epoch}, model_state_file)
# file_name = os.path.join(model_dir, 'drug_embed{}.npy'.format(current_epoch))
# np.save(file_name, all_embed.cpu().detach().numpy())
#
# data = np.load(file_name)
# print(data.shape)
#
# if last_best_epoch is not None and current_epoch != last_best_epoch:
# old_model_state_file = os.path.join(model_dir, 'model_epoch{}.pth'.format(last_best_epoch))
# old_embedding_file = os.path.join(model_dir, 'drug_embed{}.npy'.format(last_best_epoch))
# if os.path.exists(old_model_state_file):
# os.system('rm {}'.format(old_model_state_file))
# if os.path.exists(old_embedding_file):
# os.system('rm {}'.format(old_embedding_file))
if last_best_epoch is not None and current_epoch != last_best_epoch:
old_model_state_file = os.path.join(model_dir, 'model_epoch{}.pth'.format(last_best_epoch))
if os.path.exists(old_model_state_file):
os.system('rm {}'.format(old_model_state_file))
def load_model(model, model_path):
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
try:
model.load_state_dict(checkpoint['model_state_dict'])
except RuntimeError:
state_dict = OrderedDict()
for k, v in checkpoint['model_state_dict'].items():
k_ = k[7:] # remove 'module.' of DistributedDataParallel instance
state_dict[k_] = v
model.load_state_dict(state_dict)
model.eval()
return model
def _L2_loss_mean(x):
return torch.mean(torch.sum(torch.pow(x, 2), dim=1, keepdim=False) / 2.)
def get_device(args):
return th.device('cpu') if args.gpu[0] < 0 else th.device('cuda:' + str(args.gpu[0]))
# ---------------------------------------------- Main model part -----------------------------------------------------
class GCNModel(nn.Module):
def __init__(self, args, n_entities, n_relations, entity_pre_embed=None, relation_pre_embed=None,
structure_pre_embed=None):
super(GCNModel, self).__init__()
self.use_pretrain = args.use_pretrain
self.n_entities = n_entities
self.n_relations = n_relations
self.entity_dim = args.entity_dim
self.relation_dim = args.relation_dim
self.structure_dim = args.structure_dim
self.pre_entity_dim = args.pre_entity_dim
self.fusion_type = args.feature_fusion
self.multi_type = args.multi_type
self.conv_dim_list = [args.entity_dim] + eval(args.conv_dim_list)
self.mess_dropout = eval(args.mess_dropout)
self.n_layers = len(eval(args.conv_dim_list))
self.ddi_l2loss_lambda = args.DDI_l2loss_lambda
self.hidden_dim = args.entity_dim
self.eps = EMB_INIT_EPS
self.emb_init = (gamma + self.eps) / self.hidden_dim
# fusion type
if self.fusion_type == 'concat':
self.layer1_f = nn.Sequential(nn.Linear(self.structure_dim + self.entity_dim, self.entity_dim),
nn.BatchNorm1d(self.entity_dim),
nn.LeakyReLU(True))
self.layer2_f = nn.Sequential(nn.Linear(self.entity_dim, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.LeakyReLU(True))
self.layer3_f = nn.Sequential(nn.Linear(self.entity_dim, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.LeakyReLU(True))
elif self.fusion_type == 'sum':
self.W_s = nn.Linear(self.structure_dim, self.entity_dim)
self.W_e = nn.Linear(self.entity_dim, self.entity_dim)
elif self.fusion_type == 'init_double':
self.druglayer_structure = nn.Linear(self.structure_dim, self.entity_dim)
self.druglayer_KG = nn.Linear(self.entity_dim, self.entity_dim)
self.add_drug = nn.Sequential(nn.Linear(self.entity_dim, self.entity_dim))
self.cross_add_drug = nn.Sequential(nn.Linear(self.entity_dim, self.entity_dim))
self.multi_drug = nn.Sequential(nn.Linear(self.entity_dim, self.entity_dim))
self.activate = nn.ReLU()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=8, kernel_size=(5, 5)),
nn.BatchNorm2d(8), nn.MaxPool2d((2, 2)), nn.ReLU())
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=8, out_channels=8, kernel_size=(5, 5)),
nn.BatchNorm2d(8), nn.MaxPool2d((2, 2)), nn.ReLU())
if self.entity_dim == 300:
self.fc1 = nn.Sequential(nn.Linear(72 * 72 * 8, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.ReLU(True))
elif self.entity_dim == 256:
self.fc1 = nn.Sequential(nn.Linear(61 * 61 * 8, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.ReLU(True))
elif self.entity_dim == 128:
self.fc1 = nn.Sequential(nn.Linear(29 * 29 * 8, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.ReLU(True))
elif self.entity_dim == 100:
self.fc1 = nn.Sequential(nn.Linear(22 * 22 * 8, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.ReLU(True))
elif self.entity_dim == 32:
self.fc1 = nn.Sequential(nn.Linear(5 * 5 * 8, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.ReLU(True))
elif self.entity_dim == 64:
self.fc1 = nn.Sequential(nn.Linear(13 * 13 * 8, self.entity_dim), nn.BatchNorm1d(self.entity_dim),
nn.ReLU(True))
self.fc2_global = nn.Sequential(
nn.Linear(self.entity_dim * self.entity_dim + self.entity_dim, self.entity_dim),
nn.ReLU(True))
self.fc2_global_reverse = nn.Sequential(
nn.Linear(self.entity_dim * self.entity_dim + self.entity_dim, self.entity_dim),
nn.ReLU(True))
self.fc2_cross = nn.Sequential(
nn.Linear(self.entity_dim * 4, self.entity_dim),
nn.ReLU(True))
if (self.use_pretrain == 1) and (structure_pre_embed is not None):
self.n_approved_drug = structure_pre_embed.shape[0]
self.structure_pre_embed = structure_pre_embed
if self.fusion_type in ['init_double', 'sum', 'concat']:
self.pre_entity_embed = entity_pre_embed
if self.fusion_type in ['double', 'init_double']:
self.all_embedding_dim = (self.entity_dim * 3 + self.structure_dim + self.entity_dim) * 2
elif self.fusion_type in ['sum', 'concat']:
self.all_embedding_dim = self.entity_dim * 2
self.layer1 = nn.Sequential(nn.Linear(self.all_embedding_dim, args.n_hidden_1), nn.BatchNorm1d(args.n_hidden_1),
nn.ReLU(True))
self.layer2 = nn.Sequential(nn.Linear(args.n_hidden_1, args.n_hidden_2), nn.BatchNorm1d(args.n_hidden_2),
nn.ReLU(True))
self.layer3 = nn.Sequential(nn.Linear(args.n_hidden_2, args.out_dim))
def generate_fusion_feature(self, embedding_pre, embedding_after, batch_data, epoch):
# we focus on approved drug
global embedding_data
global embedding_data_reverse
entity_embed_pre = self.pre_entity_embed[:self.n_approved_drug, :]
if self.fusion_type == 'concat':
x = torch.cat([self.structure_pre_embed, entity_embed_pre], dim=1)
x = self.layer1_f(x)
x = self.layer2_f(x)
x = self.layer3_f(x)
return x
elif self.fusion_type == 'sum':
structure = self.W_s(self.structure_pre_embed)
entity = self.W_e(entity_embed_pre)
add_structure_entity = structure + entity
return add_structure_entity
elif self.fusion_type == 'init_double':
structure = self.druglayer_structure(self.structure_pre_embed)
entity = self.druglayer_KG(entity_embed_pre)
structure_embed_reshape = structure.unsqueeze(-1) # batch_size * embed_dim * 1
entity_embed_reshape = entity.unsqueeze(-1) # batch_size * embed_dim * 1
entity_matrix = structure_embed_reshape * entity_embed_reshape.permute(
(0, 2, 1)) # batch_size * embed_dim * embed_dim
entity_matrix_reverse = entity_embed_reshape * structure_embed_reshape.permute(
(0, 2, 1)) # batch_size * embed_dim * embed_dim
entity_global = entity_matrix.view(entity_matrix.size(0), -1)
entity_global_reverse = entity_matrix_reverse.view(entity_matrix.size(0), -1)
entity_matrix_reshape = entity_matrix.unsqueeze(1)
for i, data in enumerate(batch_data):
entity_matrix_reshape = entity_matrix_reshape.to('cuda')
entity_data = entity_matrix_reshape.index_select(0, data[0].to('cuda'))
out = self.conv1(entity_data)
out = self.conv2(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
if i == 0:
embedding_data = out
else:
embedding_data = torch.cat((embedding_data, out), 0)
global_local_before = torch.cat((embedding_data, entity_global), 1)
cross_embedding_pre = self.fc2_global(global_local_before)
# another reverse part
entity_matrix_reshape_reverse = entity_matrix_reverse.unsqueeze(1)
for i, data in enumerate(batch_data):
entity_matrix_reshape_reverse = entity_matrix_reshape_reverse.to('cuda')
entity_reverse = entity_matrix_reshape_reverse.index_select(0, data[0].to('cuda'))
out = self.conv1(entity_reverse)
out = self.conv2(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
if i == 0:
embedding_data_reverse = out
else:
embedding_data_reverse = torch.cat((embedding_data_reverse, out), 0)
global_local_before_reverse = torch.cat((embedding_data_reverse, entity_global_reverse), 1)
cross_embedding_pre_reverse = self.fc2_global_reverse(global_local_before_reverse)
out3 = self.activate(self.multi_drug(structure * entity))
out_concat = torch.cat(
(self.structure_pre_embed, entity_embed_pre, cross_embedding_pre, cross_embedding_pre_reverse, out3), 1)
return out_concat
def train_DDI_data(self, mode, g, train_data, embedding_pre, embedding_after, batch_data, epoch):
all_embed = self.generate_fusion_feature(embedding_pre, embedding_after, batch_data, epoch)
drug1_embed = all_embed[train_data[:, 0]]
drug2_embed = all_embed[train_data[:, 1]]
drug_data = torch.cat((drug1_embed, drug2_embed), 1)
x = self.layer1(drug_data)
x = self.layer2(x)
x = self.layer3(x)
return x
def test_DDI_data(self, mode, g, test_data, embedding_pre, embedding_after, batch_data, epoch):
all_embed = self.generate_fusion_feature(embedding_pre, embedding_after, batch_data, epoch)
drug1_embed = all_embed[test_data[:, 0]]
drug2_embed = all_embed[test_data[:, 1]]
drug_data = torch.cat((drug1_embed, drug2_embed), 1)
x = self.layer1(drug_data)
x = self.layer2(x)
x = self.layer3(x)
if self.multi_type != 'False':
pred = F.softmax(x, dim=1)
else:
pred = torch.sigmoid(x)
return pred, all_embed
def forward(self, mode, *input):
if mode == 'calc_ddi_loss':
return self.train_DDI_data(mode, *input)
if mode == 'predict':
return self.test_DDI_data(mode, *input)
if mode == 'feature_fusion':
return self.generate_fusion_feature(*input)
# -------------------------------------- metrics and evaluation define -------------------------------------------------
def calc_metrics(y_true, y_pred, pred_score, multi_type):
if multi_type != 'False':
acc = accuracy_score(y_true, y_pred)
macro_precision = precision_score(y_true, y_pred, average='macro')
macro_recall = recall_score(y_true, y_pred, average='macro')
macro_f1 = f1_score(y_true, y_pred, average='macro')
micro_precision = precision_score(y_true, y_pred, average='micro')
micro_recall = recall_score(y_true, y_pred, average='micro')
micro_f1 = f1_score(y_true, y_pred, average='micro')
return acc, macro_precision, macro_recall, macro_f1, micro_precision, micro_recall, micro_f1
else:
acc = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
auc = roc_auc_score(y_true.cuda().data.cpu().numpy(), pred_score.cuda().data.cpu().numpy())
print(acc, precision, recall, f1, auc)
return acc, precision, recall, f1, auc
def evaluate(args, model, train_graph, loader_test, embedding_pre, embedding_after, loader_idx, epoch):
model.eval()
precision_list = []
recall_list = []
f1_list = []
acc_list = []
auc_list = []
macro_precision_list = []
macro_recall_list = []
macro_f1_list = []
micro_precision_list = []
micro_recall_list = []
micro_f1_list = []
with torch.no_grad():
for data in loader_test:
test_x, test_y = data
out, all_embedding = model('predict', train_graph, test_x, embedding_pre, embedding_after, loader_idx,
epoch)
if args.multi_type == 'False':
out = out.squeeze(-1)
prediction = copy.deepcopy(out)
prediction[prediction >= 0.5] = 1
prediction[prediction < 0.5] = 0
prediction = prediction.cuda().data.cpu().numpy()
acc, precision, recall, f1, auc = calc_metrics(test_y, prediction, out, args.multi_type)
acc_list.append(acc)
precision_list.append(precision)
recall_list.append(recall)
f1_list.append(f1)
auc_list.append(auc)
else:
prediction = torch.max(out, 1)[1]
prediction = prediction.cuda().data.cpu().numpy()
acc, macro_precision, macro_recall, macro_f1, micro_precision, micro_recall, micro_f1 = calc_metrics(
test_y,
prediction,
out,
args.multi_type)
acc_list.append(acc)
macro_precision_list.append(macro_precision)
macro_recall_list.append(macro_recall)
macro_f1_list.append(macro_f1)
micro_precision_list.append(micro_precision)
micro_recall_list.append(micro_recall)
micro_f1_list.append(micro_f1)
if args.multi_type == 'False':
precision = np.mean(precision_list)
recall = np.mean(recall_list)
f1 = np.mean(f1_list)
acc = np.mean(acc_list)
auc = np.mean(auc_list)
return precision, recall, f1, acc, auc, all_embedding
else:
macro_precision = np.mean(macro_precision_list)
macro_recall = np.mean(macro_recall_list)
macro_f1 = np.mean(macro_f1_list)
micro_precision = np.mean(micro_precision_list)
micro_recall = np.mean(micro_recall_list)
micro_f1 = np.mean(micro_f1_list)
acc = np.mean(acc_list)
# print(acc, macro_precision, macro_recall, macro_f1, micro_precision, micro_recall, micro_f1)
return macro_precision, macro_recall, macro_f1, micro_precision, micro_recall, micro_f1, acc, all_embedding
# ----------------------------------- train model -------------------------------------------------------------------
def train(args):
# seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# set log file
log_save_id = create_log_id(args.save_dir)
logging_config(folder=args.save_dir, name='log{:d}'.format(log_save_id), no_console=False)
logging.info(args)
# GPU / CPU
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# initialize data
data = DataLoaderSKGDDI(args, logging)
n_approved_drug = data.n_approved_drug
n_entities = data.n_entities
# define pretrain embedding information
if args.use_pretrain == 1:
if args.feature_fusion in ['sum', 'concat', 'init_double']:
structure_pre_embed = torch.tensor(data.structure_pre_embed).to(device)
entity_pre_embed = torch.tensor(data.entity_pre_embed).to(device).float()
relation_pre_embed = torch.tensor(data.relation_pre_embed).to(device).float()
embedding_pre = torch.LongTensor(range(data.n_approved_drug)).to(device)
embedding_after = torch.LongTensor(range(data.n_approved_drug, data.n_entities)).to(device)
else:
entity_pre_embed, relation_pre_embed = None, None
structure_pre_embed = torch.tensor(data.structure_pre_embed)
else:
entity_pre_embed, relation_pre_embed, structure_pre_embed = None, None, None
train_graph = None
all_acc_list = []
all_precision_list = []
all_recall_list = []
all_f1_list = []
all_auc_list = []
all_macro_precision_list = []
all_macro_recall_list = []
all_macro_f1_list = []
all_micro_precision_list = []
all_micro_recall_list = []
all_micro_f1_list = []
# train model
# use 5-fold cross validation
for i in range(5):
# construct model & optimizer
model = GCNModel(args, data.n_entities, data.n_relations, entity_pre_embed, relation_pre_embed,
structure_pre_embed)
if args.use_pretrain == 2:
# 加载模型
model = load_model(model, args.pretrain_model_path)
model.to(device)
logging.info(model)
# define optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.multi_type != 'False':
print('Yes')
loss_func = torch.nn.CrossEntropyLoss()
else:
print('No')
loss_func = torch.nn.BCEWithLogitsLoss()
# Data.TensorDataset()里的两个输入是tensor类型
train_x = torch.from_numpy(data.DDI_train_data_X[i])
train_y = torch.from_numpy(data.DDI_train_data_Y[i])
test_x = torch.from_numpy(data.DDI_test_data_X[i])
test_y = torch.from_numpy(data.DDI_test_data_Y[i])
torch_dataset_train = Data.TensorDataset(train_x, train_y)
torch_dataset_test = Data.TensorDataset(test_x, test_y)
loader_train = Data.DataLoader(
dataset=torch_dataset_train,
batch_size=data.ddi_batch_size,
shuffle=True
)
loader_test = Data.DataLoader(
dataset=torch_dataset_test,
batch_size=args.DDI_evaluate_size,
shuffle=True
)
data_idx = Data.TensorDataset(torch.LongTensor(range(n_approved_drug)))
loader_idx = Data.DataLoader(
dataset=data_idx,
batch_size=128,
shuffle=False
)
best_epoch = -1
epoch_list = []
acc_list = []
precision_list = []
recall_list = []
f1_list = []
auc_list = []
macro_precision_list = []
macro_recall_list = []
macro_f1_list = []
micro_precision_list = []
micro_recall_list = []
micro_f1_list = []
init_step = 0
for epoch in range(1, args.n_epoch + 1):
time0 = time()
model.train()
time1 = time()
ddi_total_loss = 0
n_ddi_batch = data.n_ddi_train[i] // data.ddi_batch_size + 1
for step, (batch_x, batch_y) in enumerate(loader_train):
iter = step + 1
time2 = time()
if use_cuda:
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
out = model('calc_ddi_loss', train_graph, batch_x, embedding_pre, embedding_after, loader_idx, epoch)
if args.multi_type == 'False':
out = out.squeeze(-1)
loss = loss_func(out, batch_y.float())
else:
loss = loss_func(out, batch_y.long())
loss.backward()
optimizer.step()
optimizer.zero_grad()
ddi_total_loss += loss.item()
if (iter % args.ddi_print_every) == 0:
logging.info(
'DDI Training: Epoch {:04d} Iter {:04d} / {:04d} | Time {:.1f}s | Iter Loss {:.4f} | Iter Mean '
'Loss {:.4f}'.format(
epoch, iter, n_ddi_batch, time() - time2, loss.item(), ddi_total_loss / iter))
logging.info(
'DDI Training: Epoch {:04d} Total Iter {:04d} | Total Time {:.1f}s | Iter Mean Loss {:.4f}'.format(
epoch,
n_ddi_batch,
time() - time1,
ddi_total_loss / n_ddi_batch))
logging.info('DDI + KG Training: Epoch {:04d} | Total Time {:.1f}s'.format(epoch, time() - time0))
if args.multi_type == 'False':
if (epoch % args.evaluate_every) == 0:
time1 = time()
precision, recall, f1, acc, auc, all_embed = evaluate(args, model, train_graph, loader_test,
embedding_pre,
embedding_after, loader_idx, epoch)
logging.info(
'DDI Evaluation: Epoch {:04d} | Total Time {:.1f}s | Precision {:.4f} Recall {:.4f} F1 {:.4f} ACC '
'{:.4f} AUC {:.4f}'.format(
epoch, time() - time1, precision, recall, f1, acc, auc))
epoch_list.append(epoch)
precision_list.append(precision)
recall_list.append(recall)
f1_list.append(f1)
acc_list.append(acc)
auc_list.append(auc)
best_auc, should_stop = early_stopping(auc_list, args.stopping_steps)
if should_stop:
index = auc_list.index(best_auc)
all_acc_list.append(acc_list[index])
all_auc_list.append(auc_list[index])
all_precision_list.append(precision_list[index])
all_recall_list.append(recall_list[index])
all_f1_list.append(f1_list[index])
logging.info('Final DDI Evaluation: Precision {:.4f} Recall {:.4f} F1 {:.4f} ACC '
'{:.4f} AUC {:.4f}'.format(precision, recall, f1, acc, auc))
break
if auc_list.index(best_auc) == len(auc_list) - 1:
save_model(all_embed, model, args.save_dir, epoch, best_epoch)
logging.info('Save model on epoch {:04d}!'.format(epoch))
best_epoch = epoch
if epoch == args.n_epoch:
index = auc_list.index(best_auc)
all_acc_list.append(acc_list[index])
all_auc_list.append(auc_list[index])
all_precision_list.append(precision_list[index])
all_recall_list.append(recall_list[index])
all_f1_list.append(f1_list[index])
logging.info('Final DDI Evaluation: Precision {:.4f} Recall {:.4f} F1 {:.4f} ACC '
'{:.4f} AUC {:.4f}'.format(precision, recall, f1, acc, auc))
else:
if (epoch % args.evaluate_every) == 0:
time1 = time()
macro_precision, macro_recall, macro_f1, micro_precision, micro_recall, micro_f1, acc, all_embed = evaluate(