You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: README.md
+3-4
Original file line number
Diff line number
Diff line change
@@ -5,18 +5,17 @@ QML is a Python2/3-compatible toolkit for representation learning of properties
5
5
6
6
#### Current list of contributors:
7
7
* Anders S. Christensen (University of Basel)
8
+
* Lars A. Bratholm (University of Bristol)
9
+
* Silvia Amabilino (University of Bristol)
8
10
* Felix A. Faber (University of Basel)
9
11
* Bing Huang (University of Basel)
10
-
* Lars A. Bratholm (University of Copenhagen)
11
-
* Alexandre Tkatchenko (University of Luxembourg)
12
-
* Klaus-Robert Müller (Technische Universität Berlin/Korea University)
13
12
* O. Anatole von Lilienfeld (University of Basel)
14
13
15
14
## 1) Citing QML:
16
15
17
16
Until the preprint is available from arXiv, please cite this GitHub repository as:
18
17
19
-
AS Christensen, LA Bratholm, FA Faber, B Huang, A Tkatchenko, KR Müller, OA von Lilienfeld (2017) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
18
+
AS Christensen, LA Bratholm, S Amabilino, FA Faber, B Huang, GR Glowacki, OA von Lilienfeld (2018) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
Copy file name to clipboardexpand all lines: README.rst
+4-4
Original file line number
Diff line number
Diff line change
@@ -10,11 +10,11 @@ Current list of contributors:
10
10
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11
11
12
12
- Anders S. Christensen (University of Basel)
13
+
- Lars A. Bratholm (University of Bristol)
14
+
- Silvia Amabilino (University of Bristol)
13
15
- Felix A. Faber (University of Basel)
14
16
- Bing Huang (University of Basel)
15
-
- Lars A. Bratholm (University of Copenhagen)
16
-
- Alexandre Tkatchenko (University of Luxembourg)
17
-
- Klaus-Robert Müller (Technische Universität Berlin/Korea University)
17
+
- David R. Glowacki (University of Bristol)
18
18
- O. Anatole von Lilienfeld (University of Basel)
19
19
20
20
1) Citing QML:
@@ -25,7 +25,7 @@ repository as:
25
25
26
26
::
27
27
28
-
AS Christensen, LA Bratholm, FA Faber, B Huang, A Tkatchenko, KR Müller, OA von Lilienfeld (2017) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
28
+
AS Christensen, LA Bratholm, S Amabilino, FA Faber, B Huang, GR Glowacki, OA von Lilienfeld (2018) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
Copy file name to clipboardexpand all lines: docs/source/citation.rst
+1-1
Original file line number
Diff line number
Diff line change
@@ -9,7 +9,7 @@ Until the preprint is available from arXiv, please cite use of QML as:
9
9
10
10
::
11
11
12
-
AS Christensen, FA Faber, B Huang, LA Bratholm, A Tkatchenko, KR Müller, OA von Lilienfeld (2017) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
12
+
AS Christensen, LA Bratholm, S Amabilino, FA Faber, B Huang, DR Glowacki, OA von Lilienfeld (2018) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
The following example demonstrates how to generate a representation via
8
-
the ``qml.Compound`` class.
8
+
the ``qml.data.Compound`` class.
9
9
10
10
.. code:: python
11
11
12
+
from qml.data import Compound
13
+
12
14
# Read in an xyz or cif file.
13
15
water = Compound(xyz="water.xyz")
14
16
@@ -31,7 +33,7 @@ Generating representations via the ``qml.representations`` module
31
33
.. code:: python
32
34
33
35
import numpy as np
34
-
from qml.representations import*
36
+
from qml.ml.representations import*
35
37
36
38
# Dummy coordinates for a water molecule
37
39
coordinates = np.array([[1.464, 0.707, 1.056],
@@ -86,7 +88,7 @@ The input for most of the kernels in QML is a numpy array, where the first dimen
86
88
.. code:: python
87
89
88
90
import numpy as np
89
-
from qml.kernels import gaussian_kernel
91
+
from qml.ml.kernels import gaussian_kernel
90
92
91
93
# Generate a numpy-array of the representation
92
94
X = np.array([c.representation for c in compounds])
@@ -106,7 +108,7 @@ The easiest way to calculate the kernel matrix using an explicit, local represen
106
108
.. code:: python
107
109
108
110
import numpy as np
109
-
from qml.kernels import get_local_kernels_gaussian
111
+
from qml.ml.kernels import get_local_kernels_gaussian
110
112
111
113
# Assume the QM7 dataset is loaded into a list of Compound()
112
114
for compound in qm7:
@@ -144,7 +146,7 @@ This input (the types of many-body terms) is generate via the ``get_slatm_mbtype
144
146
145
147
.. code:: python
146
148
147
-
from qml.representations import get_slatm_mbtypes
149
+
from qml.ml.representations import get_slatm_mbtypes
148
150
149
151
# Assume 'qm7' is a list of Compound() objects.
150
152
mbtypes = get_slatm_mbtypes([mol.nuclear_charges for compound in qm7])
@@ -155,11 +157,11 @@ This input (the types of many-body terms) is generate via the ``get_slatm_mbtype
155
157
# Generate the desired representation for each compound
156
158
compound.generate_slatm(mbtypes, local=True)
157
159
158
-
The ``local`` keyword in this example specifies that a local representation is produced. Alternatively the SLATM representation can be generate via the ``qml.representations`` module:
160
+
The ``local`` keyword in this example specifies that a local representation is produced. Alternatively the SLATM representation can be generate via the ``qml.ml.representations`` module:
159
161
160
162
.. code:: python
161
163
162
-
from qml.representations import generate_slatm
164
+
from qml.ml.representations import generate_slatm
163
165
164
166
# Dummy coordinates
165
167
coordinates =...
@@ -178,7 +180,7 @@ Here ``coordinates`` is an Nx3 numpy array, and ``nuclear_charges`` is simply a
178
180
Generating the FCHL representation
179
181
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
180
182
The FCHL representation does not have an explicit representation in the form of a vector, and the kernel elements must be calculated analytically in a separate kernel function.
181
-
The syntax is analogous to the explicit representations (e.g. Coulomb matrix, BoB, SLATM, etc), but is handled by kernels from the separate ``qml.fchl`` module.
183
+
The syntax is analogous to the explicit representations (e.g. Coulomb matrix, BoB, SLATM, etc), but is handled by kernels from the separate ``qml.ml.representations.fchl`` module.
182
184
183
185
The code below show three ways to create the input representations for the FHCL kernel functions.
184
186
@@ -199,12 +201,12 @@ First using the ``Compound`` class:
199
201
The dimensions of the array should be ``(number_molecules, size, 5, size)``, where ``size`` is the
200
202
size keyword used when generating the representations.
201
203
202
-
In addition to using the ``Compound`` class to generate the representations, FCHL representations can also be generated via the ``qml.fchl.generate_fchl_representation()`` function, using similar notation to the functions in the ``qml.representations.*`` functions.
204
+
In addition to using the ``Compound`` class to generate the representations, FCHL representations can also be generated via the ``qml.ml.representations.fchl.generate_fchl_representation()`` function, using similar notation to the functions in the ``qml.ml.representations.*`` functions.
203
205
204
206
205
207
.. code:: python
206
208
207
-
from qml.fchl import generate_representation
209
+
from qml.ml.representations.fchl import generate_representation
208
210
209
211
# Dummy coordinates for a water molecule
210
212
coordinates = np.array([[1.464, 0.707, 1.056],
@@ -221,7 +223,7 @@ To create the representation for a crystal, the notation is as follows:
221
223
222
224
.. code:: python
223
225
224
-
from qml.fchl import generate_representation
226
+
from qml.ml.representations.fchl import generate_representation
225
227
226
228
# Dummy fractional coordinates
227
229
fractional_coordinates = np.array(
@@ -266,7 +268,7 @@ The following example demonstrates how to calculate the local FCHL kernel elemen
266
268
267
269
.. code:: python
268
270
269
-
from qml.fchl import get_local_kernels
271
+
from qml.ml.representations.fchl import get_local_kernels
270
272
271
273
# You can get kernels for multiple kernel-widths
272
274
sigmas = [2.5, 5.0, 10.0]
@@ -288,7 +290,7 @@ In case ``X1`` and ``X2`` are identical, K will be symmetrical. This is handled
288
290
289
291
.. code:: python
290
292
291
-
from qml.fchl import get_local_symmetric_kernels
293
+
from qml.ml.representations.fchl import get_local_symmetric_kernels
292
294
293
295
# You can get kernels for multiple kernel-widths
294
296
sigmas = [2.5, 5.0, 10.0]
@@ -307,8 +309,8 @@ In addition to the local kernel, the FCHL module also provides kernels for atomi
307
309
308
310
.. code:: python
309
311
310
-
from qml.fchl import get_atomic_kernels
311
-
from qml.fchl import get_atomic_symmetric_kernels
312
+
from qml.ml.representations.fchl import get_atomic_kernels
313
+
from qml.ml.representations.fchl import get_atomic_symmetric_kernels
312
314
313
315
The only difference between the local and atomic kernels is the shape of the input.
314
316
Since the atomic kernel outputs kernels with atomic resolution, the atomic input has the shape ``(number_atoms, 5, size)``.
QML is a Python2/3-compatible toolkit for representation learning of
12
-
properties of molecules and solids. QML is not a high-level framework
13
-
where you can do ``model.train()``, but supplies the building blocks to
12
+
properties of molecules and solids. QML supplies the the building blocks to
14
13
carry out efficient and accurate machine learning on chemical compounds.
15
-
As such, the goal is to provide usable and efficient implementations of
16
-
concepts such as representations and kernels.
14
+
The goal is to provide usable and efficient implementations of
15
+
concepts such as representations and kernels as well as a high level interface
16
+
to make it easy for computational chemists to use these for machine-learning tasks.
17
17
18
18
19
19
Current list of contributors:
20
20
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21
21
22
22
- Anders S. Christensen (University of Basel)
23
+
- Lars A. Bratholm (University of Bristol)
24
+
- Silvia Amabilino (University of Bristol)
23
25
- Felix A. Faber (University of Basel)
24
26
- Bing Huang (University of Basel)
25
-
- Lars A. Bratholm (University of Copenhagen)
26
-
- Alexandre Tkatchenko (University of Luxembourg)
27
-
- Klaus-Robert Müller (Technische Universität Berlin/Korea University)
27
+
- David R. Glowacki (University of Bristol)
28
28
- O. Anatole von Lilienfeld (University of Basel)
29
29
30
30
Code development
@@ -48,7 +48,7 @@ Until the preprint is available from arXiv, please cite use of QML as:
48
48
49
49
::
50
50
51
-
AS Christensen, FA Faber, B Huang, LA Bratholm, A Tkatchenko, KR Müller, OA von Lilienfeld (2017) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
51
+
AS Christensen, LA Bratholm, S Amabilino, FA Faber, B Huang, DR Glowacki, OA von Lilienfeld (2018) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
52
52
53
53
54
54
For citation of the individual procedures of QML, please see the "Citing use of QML" section.
0 commit comments