-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
275 lines (255 loc) · 11.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/bin/env python
import os
import sys
import copy
import torch
import models
import argparse
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import lib
from lib.util import progress_bar
from torch.autograd import Variable
import thop
from thop import profile
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='cifar10', help='Dataset name(cifar10, cifar100).')
parser.add_argument('--model', type=str, default='vgg', help='Model type to use.')
parser.add_argument('--outdir', type=str, default='./log', help='Output path.')
parser.add_argument('--aepoch', type=int, default=10, help='The number of epochs for arch learning.')
parser.add_argument('--wepoch', type=int, default=200, help='The number of epochs for weight learning.')
parser.add_argument('--alr', type=float, default=0.1, help='Learning rate of the architecture learning.')
parser.add_argument('--batchsize', type=int, default=256, help='Batchsize of dataloader.')
parser.add_argument('--expansion', type=float, default=1.0, help='The expansion ratio for the model.')
parser.add_argument('--ratio', type=float, default=0.5, help='The prune ratio used in sparsity regularzation.')
parser.add_argument('--lr', type=float, default=0.01, help='Learning rate for weight training.')
parser.add_argument('--lr_decay', action='store_true', default=False, help='If use the learning rate decay.')
parser.add_argument('--balance', type=float, default=0.5, help='The balance constant of the sparsity regularization.')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='Weight decay (default 1e-4).')
return parser.parse_args()
def prepare_data(args):
cifar_train_trans = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
cifar_val_trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
if args.dataset == 'cifar10':
train_data = datasets.CIFAR10('./data/cifar10', train=True, download=True, transform=cifar_train_trans)
val_data = datasets.CIFAR10('./data/cifar10', train=False, download=False, transform=cifar_val_trans)
elif args.dataset == 'cifar100':
train_data = datasets.CIFAR100('./data/cifar100', train=True, download=True, transform=cifar_train_trans)
val_data = datasets.CIFAR100('./data/cifar100', train=False, download=False, transform=cifar_val_trans)
else:
raise NotImplementedError
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batchsize, shuffle=True, num_workers=8)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batchsize, shuffle=False, num_workers=8)
return train_loader, val_loader
def regularzation_update(model, args):
if not args.sum_channel:
args.sum_channel = 0
for layer in model.modules():
if isinstance(layer, nn.BatchNorm2d):
args.sum_channel += layer.weight.size()[0]
sumc = args.sum_channel
for layer in model.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.weight.grad.data.add(args.balance * 2.0 * torch.sign(layer.weight.data)*(layer.weight.data/sumc-args.ratio))
def arch_train(model, args, train_loader, val_loader):
'''First Train the architecture parameters without updating the other weights'''
# Freeze the weights
for para in model.parameters():
para.requires_grad = False
# Enable the parameters of network architecture
for layer in model.modules():
if isinstance(layer, nn.BatchNorm2d):
for para in layer.parameters():
para.requires_grad = True
model.train()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.alr)
print('Training the Architecture')
for epochid in range(args.aepoch):
print('==> Epoch: %d' % epochid)
train_loss = 0.0
total = 0
correct = 0
for batchid, (data, target) in enumerate(train_loader):
if args.Use_Cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
regularzation_update(model, args)
optimizer.step()
train_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
avg_loss = train_loss / (batchid+1)
acc = correct / total
progress_bar(batchid, len(train_loader), 'Loss: %.3f | Acc: %.3f'% (avg_loss, acc))
def binary_search(model, gates, args, data_loader):
# Get single batch data to profile the flops of the model
model = copy.deepcopy(model).cpu()
data, target = next(iter(data_loader))
ori_macs, ori_params = profile(model, inputs=(data,))
#pos = min(int(len(gates) * args.ratio), len(gates)-1)
sorted_gates, _ = torch.sort(gates)
# TODO: use binary search to find the threshold for the pruning
lpos, rpos = 0, len(sorted_gates) - 1
input = torch.randn((args.batchsize, 3))
eps = 1
macs, params = None, None
while lpos < rpos:
midpos = int((lpos + rpos) / 2)
cur_thres = sorted_gates[midpos]
cfg = []
for layer in model.modules():
if isinstance(layer, nn.BatchNorm2d):
weight_copy = layer.weight.data.abs().clone()
mask = weight_copy.gt(cur_thres)
cfg.append(int(torch.sum(mask).item()))
elif isinstance(layer, nn.MaxPool2d):
cfg.append('M')
pruned_model = models.__dict__[args.model](args.num_class, cfg=cfg)
pruned_model(data)
macs, params = profile(pruned_model, inputs=(data,))
if abs(macs - ori_macs * args.ratio) < eps:
lpos = midpos
break
elif macs > ori_macs * args.ratio:
lpos = midpos + 1
else:
#macs < ori_macs * args.ratio:
rpos = midpos - 1
print('==>Original Model:')
print(' Flops: {}G Parameters: {}M'.format(ori_macs/(10**9), ori_params/(10**6)))
print('==>Pruned Model:')
print(' Flops: {}G Parameters: {}M'.format(macs/(10**9), params/(10**6)))
return sorted_gates[lpos]
def prune(model, args, data_loader):
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
print('Pruning the network according to the architecture parameters.')
gates = torch.zeros(args.sum_channel)
index = 0
pruned = 0
cfg = []
cfg_mask = []
for lid, layer in enumerate(model.modules()):
if isinstance(layer, nn.BatchNorm2d):
nchannel = layer.weight.data.shape[0]
gates[index:index+nchannel] = layer.weight.data.abs().clone()
index += nchannel
threshold = binary_search(model, gates, args, data_loader)
for lid, layer in enumerate(model.modules()):
if isinstance(layer, nn.BatchNorm2d):
weight_copy = layer.weight.data.abs().clone()
mask = weight_copy.gt(threshold)
mask = mask.float().cuda()
layer.weight.data.mul_(mask)
layer.bias.data.mul_(mask)
pruned += mask.shape[0] - sum(mask)
cfg.append(int(torch.sum(mask).item()))
cfg_mask.append(mask)
elif isinstance(layer, nn.MaxPool2d):
cfg.append('M')
print('Original channel number: ',args.sum_channel)
print(cfg)
print('After pruned channel number: ', sum(filter(lambda x: x!='M', cfg)))
new_model = models.__dict__[args.model](args.num_class, cfg=cfg)
logfile = os.path.join(args.outdir, 'log.txt')
with open(logfile, 'w') as logf:
logf.write('Configuration of the pruned model\n')
logf.write(str(cfg))
return new_model
def validation(model, val_loader, criterion, Use_Cuda):
model.eval()
test_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for batchid, (data, target) in enumerate(val_loader):
if Use_Cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
loss = criterion(output, target)
test_loss += loss
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
avg_acc = correct / total
avg_loss = test_loss / (batchid + 1)
progress_bar(batchid, len(val_loader), 'Loss: %.3f | Acc: %.3f' % (avg_loss, avg_acc))
return correct/total
def weight_train(model, train_loader, val_loader, args):
best_acc = 0.0
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
#lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.1)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [int(args.wepoch*0.5), int(args.wepoch*0.75)], gamma=0.1)
for i in range(args.wepoch):
print('==>Epoch %d' % (i+1))
print('==>Training')
model.train()
train_loss = 0.0
correct = 0
total = 0
for batchid, (data, target) in enumerate(train_loader):
if args.Use_Cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = output.max(1)
total += output.size(0)
correct += predicted.eq(target).sum().item()
avg_loss = train_loss / (batchid + 1)
avg_acc = correct / total
progress_bar(batchid, len(train_loader), 'Loss: %.3f | Acc: %.3f' % (avg_loss, avg_acc))
# Validation
print('==>Validating')
val_acc = validation(model, val_loader, criterion, args.Use_Cuda)
if val_acc > best_acc:
best_acc = val_acc
best_checkpoint = {'state_dict':model.state_dict(), 'Acc':best_acc}
fname = os.path.join(args.outdir, 'best.pth.tar')
torch.save(best_checkpoint, fname)
print('==>Best validation accuracy', best_acc)
# Save checkpoint
if (i + 1) % 10 == 0:
torch.save(model.state_dict(), os.path.join(args.outdir, 'checkpoint.pth.tar'))
# Lr_scheduler
if args.lr_decay:
lr_scheduler.step()
def main():
args = parse_args()
train_loader, val_loader = prepare_data(args)
args.num_class = 10 if args.dataset == 'cifar10' else 100
model = models.__dict__[args.model](num_classes=args.num_class, expansion=args.expansion)
args.Use_Cuda = torch.cuda.is_available()
args.sum_channel = None
if args.Use_Cuda:
model.cuda()
arch_train(model, args, train_loader, val_loader)
new_model = prune(model, args, train_loader)
if args.Use_Cuda:
new_model.cuda()
weight_train(new_model, train_loader, val_loader, args)
if __name__ == '__main__':
main()