You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Here is the neural network for sequence-to-sequence task. "TokenN" are from source sequence, and "ELayerX-Y" are auto-encoder's hidden layers. Auto-encoder is defined in feature configuration file. "<s>" is always the beginning of target sentence, and "DLayerX-Y" means the decoder's hidden layers. In decoder, it generates one token at one time until "</s>" is generated.
21
+
Here is the neural network for sequence-to-sequence task. "TokenN" are from source sequence, and "ELayerX-Y" are auto-encoder's hidden layers. Auto-encoder is defined in feature configuration file. <s> is always the beginning of target sentence, and "DLayerX-Y" means the decoder's hidden layers. In decoder, it generates one token at one time until </s> is generated.
The rule-string has two types, one is constant string, and the other is variable. The simplest variable format is {“%x[row,col]”}. Row specifies the offset between current focusing token and generate feature token in row. Col specifies the absolute column position in corpus. Moreover, variable combination is also supported, for example: {“%x[row1, col1]/%x[row2, col2]”}. When we build feature set, variable will be expanded to specific string. Here is an example in training data:
50
+
The rule-string has two types, one is constant string, and the other is variable. The simplest variable format is {“%x[row,col]”}. Row specifies the offset between current focusing token and generate feature token in row. Col specifies the absolute column position in corpus. Moreover, variable combination is also supported, for example: {“%x[row1, col1]/%x[row2, col2]”}. When we build feature set, variable will be expanded to specific string. Here is an example in training data for named entity task.
51
51
52
52
Word | Pos | Tag
53
53
-----------|------|----
@@ -204,10 +204,10 @@ your
204
204
name
205
205
?
206
206
207
-
I
208
-
am
209
-
Zhongkai
210
-
Fu
207
+
I
208
+
am
209
+
Zhongkai
210
+
Fu
211
211
212
212
In above example, "What is your name ?" is the source sentence, and "I am Zhongkai Fu" is the target sentence generated by RNNSharp seq-to-seq model. In source sentence, beside word features, any other feautes can be added for it as well such as postag feature in sequence labeling task in above.
0 commit comments