-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_tu.py
155 lines (119 loc) · 6.33 KB
/
main_tu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from utils.process import load_data, separate_data
from models.graphcnn import GraphCNN
torch.backends.cudnn.enabled = False
def train(args, model, device, train_graphs, optimizer, epoch):
model.train()
total_iters = args.iters_per_epoch
pbar = tqdm(range(total_iters), unit='batch')
loss_all = 0
for _ in pbar:
selected_idx = np.random.permutation(len(train_graphs))[:args.batch_size]
batch_graph = [train_graphs[idx] for idx in selected_idx]
output = model(batch_graph)
labels = torch.LongTensor([graph.label for graph in batch_graph]).to(device)
criterion = nn.CrossEntropyLoss()
# compute loss
loss = criterion(output, labels)
# backprop
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_all += loss.detach().cpu().numpy()
# report
pbar.set_description('epoch: %d' % epoch)
train_loss = loss_all / total_iters
print("loss training: %f" % train_loss)
return train_loss
# pass data to model with mini-batch during testing to avoid memory overflow (does not perform back-propagation)
def pass_data_iteratively(model, graphs, minibatch_size=64):
model.eval()
output = []
idx = np.arange(len(graphs))
for i in range(0, len(graphs), minibatch_size):
sampled_idx = idx[i:i+minibatch_size]
if len(sampled_idx) == 0:
continue
output.append(model([graphs[j] for j in sampled_idx]).detach())
return torch.cat(output, 0)
def evaluate(args, model, device, train_graphs, test_graphs):
model.eval()
output = pass_data_iteratively(model, train_graphs)
pred = output.max(1, keepdim=True)[1]
labels = torch.LongTensor([graph.label for graph in train_graphs]).to(device)
correct = pred.eq(labels.view_as(pred)).sum().cpu().item()
acc_train = correct / float(len(train_graphs))
output = pass_data_iteratively(model, test_graphs)
pred = output.max(1, keepdim=True)[1]
labels = torch.LongTensor([graph.label for graph in test_graphs]).to(device)
correct = pred.eq(labels.view_as(pred)).sum().cpu().item()
acc_test = correct / float(len(test_graphs))
return acc_train, acc_test
def main():
# Parameters settings
# Note: Hyper-parameters need to be tuned to obtain the results reported in the paper.
# Please refer to our paper for more details about hyper-parameter configurations.
parser = argparse.ArgumentParser(description='PyTorch implementation of PG-GNN for TU datasets')
parser.add_argument('--dataset', type=str, default="IMDBBINARY",
help='name of dataset (default: IMDBBINARY)')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=16,
help='input batch size for training (default: 16)')
parser.add_argument('--iters_per_epoch', type=int, default=50,
help='number of iterations per epoch (default: 50)')
parser.add_argument('--epochs', type=int, default=400,
help='maximum number of training epochs (default: 400)')
parser.add_argument('--lr', type=float, default=0.001,
help='initial learning rate (default: 0.001)')
parser.add_argument('--seed', type=int, default=7,
help='random seed for running the experiment (default: 7)')
parser.add_argument('--fold_idx', type=int, default=0,
help='fold index in 10-fold validation (should be less then 10)')
parser.add_argument('--num_layers', type=int, default=5,
help='number of layers INCLUDING the input one (default: 5)')
parser.add_argument('--num_mlp_layers', type=int, default=2,
help='number of layers for MLP/RNN EXCLUDING the input one (default: 2)')
parser.add_argument('--hidden_dim', type=int, default=16,
help='number of hidden units (default: 16)')
parser.add_argument('--final_dropout', type=float, default=0.0,
help='dropout ratio after the final layer (default: 0.0)')
parser.add_argument('--graph_pooling_type', type=str, default="sum", choices=["sum", "average"],
help='pooling for all nodes in a graph: sum or average')
parser.add_argument('--neighbor_pooling_type', type=str, default="lstm", choices=["sum", "average", "max", "srn", "gru", "lstm"],
help='pooling for neighboring nodes: sum, average, max, srn, gru, or lstm')
parser.add_argument('--degree_as_tag', action="store_true",
help='let the input node features be node degrees')
args = parser.parse_args()
# set up seeds and gpu device
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
graphs, num_classes = load_data(args.dataset, args.degree_as_tag)
# 10-fold cross validation. Conduct an experiment on the fold specified by args.fold_idx.
train_graphs, test_graphs = separate_data(graphs, args.seed, args.fold_idx)
model = GraphCNN(args.num_layers, args.num_mlp_layers, train_graphs[0].node_features.shape[1], args.hidden_dim,
num_classes, args.final_dropout, args.graph_pooling_type, args.neighbor_pooling_type, device).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
for epoch in range(1, args.epochs + 1):
train_loss = train(args, model, device, train_graphs, optimizer, epoch)
acc_train, acc_test = evaluate(args, model, device, train_graphs, test_graphs)
print("accuracy train: %f, test: %f" % (acc_train, acc_test))
# with open(filename, 'a') as f:
# f.write("%f %f %f" % (train_loss, acc_train, acc_test))
# f.write("\n")
scheduler.step()
print("")
if __name__ == '__main__':
main()