Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PROF-11524] Fix not being able to set profile start_time at serialization #963

Merged
merged 4 commits into from
Mar 27, 2025

Conversation

ivoanjo
Copy link
Member

@ivoanjo ivoanjo commented Mar 21, 2025

What does this PR do?

In #926 we removed the start_time argument from

  • ddog_prof_Profile_new
  • ddog_prof_Profile_with_string_storage
  • ddog_prof_Profile_reset

The intention was that having it as an argument in ddog_prof_Profile_serialize was enough, and anyway almost everyone was passing in nulls in the APIs above.

I missed when suggesting in that PR that the start_time for serialize was the start_time for the next profile, not the one being serialized.

In this PR I'm changing that behavior: the start_time argument to serialize now controls the time for the profile being serialized, allowing the profiling library to have exact control over this value.

I've also removed the duration.

As can be seen in this github search this is not expected to impact anyone: everyone's passing NULL for start_time and duration when calling serialize already.

Motivation

Allow Ruby profiler to set the start_time of profiles.

Additional Notes

N/A

How to test the change?

I've tested this with my experimental libdatadog 17 branch for Ruby.

…ation

**What does this PR do?**

In #926 we removed the
`start_time` argument from
* `ddog_prof_Profile_new`
* `ddog_prof_Profile_with_string_storage`
* `ddog_prof_Profile_reset`

The intention was that having it as an argument in
`ddog_prof_Profile_serialize` was enough, and anyway almost
everyone was passing in `null`s in the APIs above.

I missed when suggesting in that PR that the `start_time` for
serialize was the `start_time` for the next profile, not the one
being serialized.

In this PR I'm changing that behavior: the `start_time` argument
to serialize now controls the time for the profile being
serialized, allowing the profiling library to have exact control
over this value.

I've also removed the duration.

[As can be seen in this github
search](https://github.com/search?q=org%3ADataDog+ddog_prof_Profile_serialize&type=code)
this is not expected to impact anyone: everyone's passing
`NULL` for `start_time` and `duration` when calling serialize already.

**Motivation:**

Allow Ruby profiler to set the start_time of profiles.

**Additional Notes:**

N/A

**How to test the change?**

I've tested this with my experimental libdatadog 17 branch for Ruby.
@ivoanjo ivoanjo requested review from a team as code owners March 21, 2025 17:21
@github-actions github-actions bot added the profiling Relates to the profiling* modules. label Mar 21, 2025
@r1viollet
Copy link
Contributor

r1viollet commented Mar 21, 2025

Artifact Size Benchmark Report

aarch64-alpine-linux-musl
Artifact Baseline Commit Change
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.a 77.23 MB 77.23 MB +0% (+624 B) 👌
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.so 7.69 MB 7.69 MB 0% (0 B) 👌
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.so.debug 23.83 MB 23.84 MB +0% (+96 B) 👌
aarch64-unknown-linux-gnu
Artifact Baseline Commit Change
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.so 7.62 MB 7.62 MB 0% (0 B) 👌
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.a 71.54 MB 71.54 MB -0% (-856 B) 👌
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.so.debug 22.42 MB 22.42 MB -0% (-256 B) 👌
i686-alpine-linux-musl
Artifact Baseline Commit Change
/i686-alpine-linux-musl/lib/libdatadog_profiling.a 66.56 MB 66.56 MB -0% (-256 B) 👌
/i686-alpine-linux-musl/lib/libdatadog_profiling.so 8.19 MB 8.19 MB 0% (0 B) 👌
/i686-alpine-linux-musl/lib/libdatadog_profiling.so.debug 23.01 MB 23.01 MB -0% (-40 B) 👌
i686-unknown-linux-gnu
Artifact Baseline Commit Change
/i686-unknown-linux-gnu/lib/libdatadog_profiling.a 67.45 MB 67.45 MB -0% (-280 B) 👌
/i686-unknown-linux-gnu/lib/libdatadog_profiling.so 8.07 MB 8.07 MB 0% (0 B) 👌
/i686-unknown-linux-gnu/lib/libdatadog_profiling.so.debug 20.62 MB 20.62 MB -0% (-96 B) 👌
libdatadog-x64-windows
Artifact Baseline Commit Change
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.dll 16.59 MB 16.59 MB -0% (-1.50 KB) 👌
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.lib 55.10 KB 55.10 KB 0% (0 B) 👌
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.pdb 111.21 MB 111.19 MB --.02% (-24.00 KB) 💪
/libdatadog-x64-windows/debug/static/datadog_profiling_ffi.lib 625.62 MB 625.59 MB -0% (-31.96 KB) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.dll 4.99 MB 4.99 MB 0% (0 B) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.lib 55.10 KB 55.10 KB 0% (0 B) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.pdb 15.85 MB 15.85 MB 0% (0 B) 👌
/libdatadog-x64-windows/release/static/datadog_profiling_ffi.lib 26.38 MB 26.38 MB -0% (-40 B) 👌
libdatadog-x86-windows
Artifact Baseline Commit Change
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.dll 14.03 MB 14.03 MB --.01% (-2.00 KB) 💪
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.lib 55.94 KB 55.94 KB 0% (0 B) 👌
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.pdb 113.19 MB 113.18 MB -0% (-8.00 KB) 👌
/libdatadog-x86-windows/debug/static/datadog_profiling_ffi.lib 618.14 MB 618.11 MB -0% (-32.43 KB) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.dll 3.78 MB 3.78 MB 0% (0 B) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.lib 55.94 KB 55.94 KB 0% (0 B) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.pdb 16.51 MB 16.51 MB 0% (0 B) 👌
/libdatadog-x86-windows/release/static/datadog_profiling_ffi.lib 24.36 MB 24.36 MB -0% (-142 B) 👌
x86_64-alpine-linux-musl
Artifact Baseline Commit Change
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.a 66.56 MB 66.56 MB -0% (-256 B) 👌
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.so 8.19 MB 8.19 MB 0% (0 B) 👌
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.so.debug 23.01 MB 23.01 MB -0% (-40 B) 👌
x86_64-unknown-linux-gnu
Artifact Baseline Commit Change
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.a 67.45 MB 67.45 MB -0% (-280 B) 👌
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.so 8.07 MB 8.07 MB 0% (0 B) 👌
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.so.debug 20.62 MB 20.62 MB -0% (-96 B) 👌

@pr-commenter
Copy link

pr-commenter bot commented Mar 21, 2025

Benchmarks

Comparison

Benchmark execution time: 2025-03-27 17:37:25

Comparing candidate commit 788d9a6 in PR branch ivoanjo/prof-11524-fix-serialize-start-time with baseline commit 462b4b9 in branch main.

Found 0 performance improvements and 2 performance regressions! Performance is the same for 50 metrics, 2 unstable metrics.

scenario:normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて

  • 🟥 execution_time [+26.474µs; +27.054µs] or [+5.818%; +5.945%]
  • 🟥 throughput [-123263.253op/s; -120800.564op/s] or [-5.609%; -5.497%]

Candidate

Candidate benchmark details

Group 1

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
tags/replace_trace_tags execution_time 2.343µs 2.410µs ± 0.018µs 2.410µs ± 0.009µs 2.420µs 2.438µs 2.443µs 2.443µs 1.37% -1.133 3.102 0.74% 0.001µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
tags/replace_trace_tags execution_time [2.408µs; 2.413µs] or [-0.102%; +0.102%] None None None

Group 2

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
redis/obfuscate_redis_string execution_time 32.774µs 33.724µs ± 1.219µs 32.981µs ± 0.120µs 34.981µs 36.049µs 36.258µs 36.873µs 11.80% 1.014 -0.735 3.61% 0.086µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
redis/obfuscate_redis_string execution_time [33.555µs; 33.893µs] or [-0.501%; +0.501%] None None None

Group 3

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
sql/obfuscate_sql_string execution_time 65.130µs 65.511µs ± 1.348µs 65.385µs ± 0.066µs 65.451µs 65.660µs 65.985µs 84.064µs 28.57% 13.201 178.202 2.05% 0.095µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
sql/obfuscate_sql_string execution_time [65.324µs; 65.698µs] or [-0.285%; +0.285%] None None None

Group 4

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
concentrator/add_spans_to_concentrator execution_time 6.012ms 6.026ms ± 0.007ms 6.025ms ± 0.003ms 6.028ms 6.035ms 6.048ms 6.070ms 0.74% 2.493 13.196 0.11% 0.000ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
concentrator/add_spans_to_concentrator execution_time [6.025ms; 6.027ms] or [-0.015%; +0.015%] None None None

Group 5

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
benching deserializing traces from msgpack to their internal representation execution_time 55.840ms 56.116ms ± 0.208ms 56.061ms ± 0.054ms 56.135ms 56.522ms 56.999ms 57.618ms 2.78% 3.696 18.465 0.37% 0.015ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
benching deserializing traces from msgpack to their internal representation execution_time [56.087ms; 56.145ms] or [-0.051%; +0.051%] None None None

Group 6

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
ip_address/quantize_peer_ip_address_benchmark execution_time 4.936µs 5.011µs ± 0.038µs 5.011µs ± 0.026µs 5.037µs 5.068µs 5.072µs 5.074µs 1.25% -0.128 -1.108 0.75% 0.003µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
ip_address/quantize_peer_ip_address_benchmark execution_time [5.006µs; 5.016µs] or [-0.104%; +0.104%] None None None

Group 7

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
credit_card/is_card_number/ execution_time 3.899µs 3.915µs ± 0.002µs 3.915µs ± 0.001µs 3.916µs 3.919µs 3.920µs 3.921µs 0.17% -1.440 10.012 0.06% 0.000µs 1 200
credit_card/is_card_number/ throughput 255004551.657op/s 255424780.643op/s ± 152330.153op/s 255425709.434op/s ± 78967.330op/s 255497253.407op/s 255640191.881op/s 255754624.912op/s 256464588.966op/s 0.41% 1.458 10.139 0.06% 10771.368op/s 1 200
credit_card/is_card_number/ 3782-8224-6310-005 execution_time 81.744µs 82.269µs ± 0.374µs 82.179µs ± 0.207µs 82.447µs 83.117µs 83.300µs 83.706µs 1.86% 1.211 1.208 0.45% 0.026µs 1 200
credit_card/is_card_number/ 3782-8224-6310-005 throughput 11946579.596op/s 12155475.185op/s ± 54976.332op/s 12168589.828op/s ± 30676.420op/s 12196541.671op/s 12215695.707op/s 12224902.448op/s 12233332.160op/s 0.53% -1.188 1.127 0.45% 3887.414op/s 1 200
credit_card/is_card_number/ 378282246310005 execution_time 76.351µs 76.791µs ± 0.328µs 76.729µs ± 0.209µs 76.990µs 77.372µs 77.880µs 78.109µs 1.80% 1.199 1.616 0.43% 0.023µs 1 200
credit_card/is_card_number/ 378282246310005 throughput 12802640.745op/s 13022637.435op/s ± 55371.883op/s 13032907.894op/s ± 35473.614op/s 13066358.700op/s 13085700.016op/s 13095903.156op/s 13097355.644op/s 0.49% -1.171 1.506 0.42% 3915.383op/s 1 200
credit_card/is_card_number/37828224631 execution_time 3.894µs 3.915µs ± 0.003µs 3.915µs ± 0.002µs 3.917µs 3.920µs 3.922µs 3.922µs 0.18% -1.517 8.114 0.08% 0.000µs 1 200
credit_card/is_card_number/37828224631 throughput 254948766.179op/s 255413311.276op/s ± 215154.487op/s 255396475.543op/s ± 127338.575op/s 255529138.046op/s 255767399.642op/s 255877999.299op/s 256826388.077op/s 0.56% 1.537 8.260 0.08% 15213.720op/s 1 200
credit_card/is_card_number/378282246310005 execution_time 71.921µs 72.320µs ± 0.393µs 72.177µs ± 0.179µs 72.459µs 73.081µs 73.637µs 74.283µs 2.92% 1.883 4.589 0.54% 0.028µs 1 200
credit_card/is_card_number/378282246310005 throughput 13462119.001op/s 13827882.883op/s ± 74386.913op/s 13854790.519op/s ± 34452.516op/s 13883292.846op/s 13892033.822op/s 13899667.132op/s 13904142.044op/s 0.36% -1.835 4.302 0.54% 5259.949op/s 1 200
credit_card/is_card_number/37828224631000521389798 execution_time 51.931µs 52.148µs ± 0.094µs 52.143µs ± 0.060µs 52.208µs 52.280µs 52.403µs 52.480µs 0.65% 0.310 0.563 0.18% 0.007µs 1 200
credit_card/is_card_number/37828224631000521389798 throughput 19054904.524op/s 19176376.307op/s ± 34669.576op/s 19178194.399op/s ± 22062.572op/s 19198133.463op/s 19236224.697op/s 19249364.246op/s 19256216.599op/s 0.41% -0.297 0.541 0.18% 2451.509op/s 1 200
credit_card/is_card_number/x371413321323331 execution_time 6.429µs 6.442µs ± 0.004µs 6.442µs ± 0.002µs 6.444µs 6.448µs 6.451µs 6.453µs 0.17% -0.445 1.568 0.06% 0.000µs 1 200
credit_card/is_card_number/x371413321323331 throughput 154969266.259op/s 155237692.270op/s ± 91114.052op/s 155232373.714op/s ± 43466.154op/s 155273265.692op/s 155412216.936op/s 155496317.516op/s 155543330.794op/s 0.20% 0.451 1.572 0.06% 6442.736op/s 1 200
credit_card/is_card_number_no_luhn/ execution_time 3.898µs 3.914µs ± 0.003µs 3.915µs ± 0.001µs 3.916µs 3.918µs 3.919µs 3.926µs 0.28% -1.093 7.210 0.07% 0.000µs 1 200
credit_card/is_card_number_no_luhn/ throughput 254730179.923op/s 255461257.762op/s ± 179414.711op/s 255436089.895op/s ± 82662.762op/s 255534893.290op/s 255798863.882op/s 255867663.427op/s 256556783.045op/s 0.44% 1.110 7.282 0.07% 12686.536op/s 1 200
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 execution_time 63.914µs 64.266µs ± 0.112µs 64.258µs ± 0.041µs 64.297µs 64.480µs 64.694µs 64.907µs 1.01% 1.855 7.647 0.17% 0.008µs 1 200
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 throughput 15406692.233op/s 15560381.075op/s ± 27129.249op/s 15562228.916op/s ± 9880.567op/s 15573151.110op/s 15591859.260op/s 15611412.869op/s 15645923.916op/s 0.54% -1.823 7.501 0.17% 1918.328op/s 1 200
credit_card/is_card_number_no_luhn/ 378282246310005 execution_time 58.168µs 58.310µs ± 0.104µs 58.282µs ± 0.031µs 58.325µs 58.588µs 58.682µs 58.912µs 1.08% 2.673 8.547 0.18% 0.007µs 1 200
credit_card/is_card_number_no_luhn/ 378282246310005 throughput 16974468.721op/s 17149666.627op/s ± 30322.195op/s 17158022.897op/s ± 8984.689op/s 17165448.527op/s 17175661.916op/s 17185796.053op/s 17191503.959op/s 0.20% -2.655 8.421 0.18% 2144.103op/s 1 200
credit_card/is_card_number_no_luhn/37828224631 execution_time 3.894µs 3.915µs ± 0.003µs 3.915µs ± 0.001µs 3.916µs 3.919µs 3.921µs 3.931µs 0.41% -0.896 9.633 0.08% 0.000µs 1 200
credit_card/is_card_number_no_luhn/37828224631 throughput 254406737.925op/s 255459831.047op/s ± 211286.841op/s 255442959.588op/s ± 97262.443op/s 255540043.125op/s 255826861.103op/s 255880912.045op/s 256794784.985op/s 0.53% 0.923 9.710 0.08% 14940.236op/s 1 200
credit_card/is_card_number_no_luhn/378282246310005 execution_time 54.579µs 54.772µs ± 0.177µs 54.698µs ± 0.056µs 54.819µs 55.153µs 55.321µs 55.663µs 1.76% 1.861 3.763 0.32% 0.013µs 1 200
credit_card/is_card_number_no_luhn/378282246310005 throughput 17965362.781op/s 18257756.099op/s ± 58693.529op/s 18282066.213op/s ± 18878.578op/s 18295797.914op/s 18308598.085op/s 18318837.265op/s 18322138.640op/s 0.22% -1.839 3.629 0.32% 4150.259op/s 1 200
credit_card/is_card_number_no_luhn/37828224631000521389798 execution_time 51.917µs 52.150µs ± 0.103µs 52.146µs ± 0.059µs 52.205µs 52.310µs 52.427µs 52.567µs 0.81% 0.508 1.384 0.20% 0.007µs 1 200
credit_card/is_card_number_no_luhn/37828224631000521389798 throughput 19023222.897op/s 19175375.315op/s ± 37914.545op/s 19176853.539op/s ± 21861.107op/s 19198670.012op/s 19230684.309op/s 19260649.474op/s 19261563.810op/s 0.44% -0.490 1.344 0.20% 2680.963op/s 1 200
credit_card/is_card_number_no_luhn/x371413321323331 execution_time 6.431µs 6.444µs ± 0.005µs 6.443µs ± 0.003µs 6.446µs 6.452µs 6.454µs 6.463µs 0.31% 0.648 1.523 0.07% 0.000µs 1 200
credit_card/is_card_number_no_luhn/x371413321323331 throughput 154718937.558op/s 155186740.713op/s ± 108416.064op/s 155200198.512op/s ± 63850.098op/s 155258336.478op/s 155325640.387op/s 155416380.867op/s 155505920.941op/s 0.20% -0.642 1.510 0.07% 7666.173op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
credit_card/is_card_number/ execution_time [3.915µs; 3.915µs] or [-0.008%; +0.008%] None None None
credit_card/is_card_number/ throughput [255403669.149op/s; 255445892.137op/s] or [-0.008%; +0.008%] None None None
credit_card/is_card_number/ 3782-8224-6310-005 execution_time [82.217µs; 82.321µs] or [-0.063%; +0.063%] None None None
credit_card/is_card_number/ 3782-8224-6310-005 throughput [12147855.994op/s; 12163094.376op/s] or [-0.063%; +0.063%] None None None
credit_card/is_card_number/ 378282246310005 execution_time [76.745µs; 76.836µs] or [-0.059%; +0.059%] None None None
credit_card/is_card_number/ 378282246310005 throughput [13014963.425op/s; 13030311.445op/s] or [-0.059%; +0.059%] None None None
credit_card/is_card_number/37828224631 execution_time [3.915µs; 3.916µs] or [-0.012%; +0.012%] None None None
credit_card/is_card_number/37828224631 throughput [255383492.933op/s; 255443129.618op/s] or [-0.012%; +0.012%] None None None
credit_card/is_card_number/378282246310005 execution_time [72.265µs; 72.374µs] or [-0.075%; +0.075%] None None None
credit_card/is_card_number/378282246310005 throughput [13817573.572op/s; 13838192.193op/s] or [-0.075%; +0.075%] None None None
credit_card/is_card_number/37828224631000521389798 execution_time [52.135µs; 52.161µs] or [-0.025%; +0.025%] None None None
credit_card/is_card_number/37828224631000521389798 throughput [19171571.437op/s; 19181181.176op/s] or [-0.025%; +0.025%] None None None
credit_card/is_card_number/x371413321323331 execution_time [6.441µs; 6.442µs] or [-0.008%; +0.008%] None None None
credit_card/is_card_number/x371413321323331 throughput [155225064.738op/s; 155250319.801op/s] or [-0.008%; +0.008%] None None None
credit_card/is_card_number_no_luhn/ execution_time [3.914µs; 3.915µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/ throughput [255436392.608op/s; 255486122.915op/s] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 execution_time [64.250µs; 64.282µs] or [-0.024%; +0.024%] None None None
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 throughput [15556621.222op/s; 15564140.928op/s] or [-0.024%; +0.024%] None None None
credit_card/is_card_number_no_luhn/ 378282246310005 execution_time [58.296µs; 58.325µs] or [-0.025%; +0.025%] None None None
credit_card/is_card_number_no_luhn/ 378282246310005 throughput [17145464.262op/s; 17153868.991op/s] or [-0.025%; +0.025%] None None None
credit_card/is_card_number_no_luhn/37828224631 execution_time [3.914µs; 3.915µs] or [-0.011%; +0.011%] None None None
credit_card/is_card_number_no_luhn/37828224631 throughput [255430548.723op/s; 255489113.371op/s] or [-0.011%; +0.011%] None None None
credit_card/is_card_number_no_luhn/378282246310005 execution_time [54.747µs; 54.796µs] or [-0.045%; +0.045%] None None None
credit_card/is_card_number_no_luhn/378282246310005 throughput [18249621.740op/s; 18265890.458op/s] or [-0.045%; +0.045%] None None None
credit_card/is_card_number_no_luhn/37828224631000521389798 execution_time [52.136µs; 52.165µs] or [-0.027%; +0.027%] None None None
credit_card/is_card_number_no_luhn/37828224631000521389798 throughput [19170120.723op/s; 19180629.906op/s] or [-0.027%; +0.027%] None None None
credit_card/is_card_number_no_luhn/x371413321323331 execution_time [6.443µs; 6.444µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/x371413321323331 throughput [155171715.289op/s; 155201766.136op/s] or [-0.010%; +0.010%] None None None

Group 8

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
write only interface execution_time 1.209µs 3.167µs ± 1.402µs 2.974µs ± 0.027µs 3.004µs 3.635µs 13.751µs 14.779µs 396.92% 7.409 55.861 44.16% 0.099µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
write only interface execution_time [2.973µs; 3.362µs] or [-6.136%; +6.136%] None None None

Group 9

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
benching string interning on wordpress profile execution_time 146.460µs 147.440µs ± 0.361µs 147.386µs ± 0.212µs 147.629µs 148.165µs 148.462µs 148.611µs 0.83% 0.764 0.681 0.24% 0.026µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
benching string interning on wordpress profile execution_time [147.390µs; 147.490µs] or [-0.034%; +0.034%] None None None

Group 10

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_trace/test_trace execution_time 243.845ns 254.547ns ± 12.093ns 249.105ns ± 2.767ns 256.766ns 283.777ns 288.993ns 289.318ns 16.14% 1.543 1.121 4.74% 0.855ns 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_trace/test_trace execution_time [252.871ns; 256.223ns] or [-0.658%; +0.658%] None None None

Group 11

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
two way interface execution_time 17.820µs 26.499µs ± 11.487µs 18.239µs ± 0.318µs 35.856µs 46.649µs 48.645µs 90.374µs 395.50% 1.722 5.325 43.24% 0.812µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
two way interface execution_time [24.907µs; 28.091µs] or [-6.008%; +6.008%] None None None

Group 12

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... execution_time 503.903µs 505.196µs ± 0.578µs 505.175µs ± 0.259µs 505.437µs 505.909µs 506.336µs 510.232µs 1.00% 3.183 27.430 0.11% 0.041µs 1 200
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... throughput 1959891.688op/s 1979431.219op/s ± 2257.757op/s 1979511.397op/s ± 1015.559op/s 1980477.498op/s 1982793.986op/s 1984274.676op/s 1984509.799op/s 0.25% -3.118 26.742 0.11% 159.648op/s 1 200
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて execution_time 479.933µs 481.832µs ± 2.009µs 481.557µs ± 0.509µs 482.057µs 483.174µs 491.284µs 501.758µs 4.19% 6.452 53.439 0.42% 0.142µs 1 200
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて throughput 1992993.056op/s 2075447.763op/s ± 8430.853op/s 2076599.073op/s ± 2196.404op/s 2078833.752op/s 2081781.619op/s 2082839.774op/s 2083626.229op/s 0.34% -6.283 50.997 0.41% 596.151op/s 1 200
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters execution_time 177.244µs 177.656µs ± 0.138µs 177.645µs ± 0.076µs 177.725µs 177.879µs 178.033µs 178.443µs 0.45% 0.959 4.976 0.08% 0.010µs 1 200
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters throughput 5604034.249op/s 5628849.859op/s ± 4377.118op/s 5629208.563op/s ± 2421.694op/s 5631606.471op/s 5634773.872op/s 5639902.542op/s 5641946.136op/s 0.23% -0.945 4.910 0.08% 309.509op/s 1 200
normalization/normalize_service/normalize_service/[empty string] execution_time 37.563µs 37.638µs ± 0.038µs 37.635µs ± 0.023µs 37.659µs 37.704µs 37.749µs 37.804µs 0.45% 0.936 1.839 0.10% 0.003µs 1 200
normalization/normalize_service/normalize_service/[empty string] throughput 26452417.034op/s 26568611.486op/s ± 27048.902op/s 26570823.554op/s ± 16435.442op/s 26586093.280op/s 26606023.372op/s 26619438.551op/s 26621937.800op/s 0.19% -0.927 1.810 0.10% 1912.646op/s 1 200
normalization/normalize_service/normalize_service/test_ASCII execution_time 48.209µs 48.307µs ± 0.122µs 48.296µs ± 0.024µs 48.324µs 48.377µs 48.417µs 49.909µs 3.34% 11.528 149.326 0.25% 0.009µs 1 200
normalization/normalize_service/normalize_service/test_ASCII throughput 20036452.683op/s 20701089.505op/s ± 50644.887op/s 20705862.865op/s ± 10421.500op/s 20715468.741op/s 20734786.646op/s 20738555.878op/s 20743146.806op/s 0.18% -11.388 146.867 0.24% 3581.134op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... execution_time [505.116µs; 505.276µs] or [-0.016%; +0.016%] None None None
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... throughput [1979118.315op/s; 1979744.122op/s] or [-0.016%; +0.016%] None None None
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて execution_time [481.553µs; 482.110µs] or [-0.058%; +0.058%] None None None
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて throughput [2074279.328op/s; 2076616.198op/s] or [-0.056%; +0.056%] None None None
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters execution_time [177.637µs; 177.675µs] or [-0.011%; +0.011%] None None None
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters throughput [5628243.232op/s; 5629456.485op/s] or [-0.011%; +0.011%] None None None
normalization/normalize_service/normalize_service/[empty string] execution_time [37.633µs; 37.644µs] or [-0.014%; +0.014%] None None None
normalization/normalize_service/normalize_service/[empty string] throughput [26564862.769op/s; 26572360.204op/s] or [-0.014%; +0.014%] None None None
normalization/normalize_service/normalize_service/test_ASCII execution_time [48.290µs; 48.324µs] or [-0.035%; +0.035%] None None None
normalization/normalize_service/normalize_service/test_ASCII throughput [20694070.611op/s; 20708108.400op/s] or [-0.034%; +0.034%] None None None

Group 13

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 788d9a6 1743096335 ivoanjo/prof-11524-fix-serialize-start-time
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... execution_time 208.700µs 209.091µs ± 0.142µs 209.094µs ± 0.090µs 209.187µs 209.327µs 209.380µs 209.396µs 0.14% -0.229 -0.099 0.07% 0.010µs 1 200
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... throughput 4775643.581op/s 4782600.204op/s ± 3247.326op/s 4782529.102op/s ± 2055.350op/s 4784483.124op/s 4788483.761op/s 4790572.767op/s 4791571.944op/s 0.19% 0.233 -0.096 0.07% 229.621op/s 1 200
normalization/normalize_name/normalize_name/bad-name execution_time 18.597µs 18.657µs ± 0.030µs 18.653µs ± 0.018µs 18.673µs 18.707µs 18.754µs 18.780µs 0.68% 0.877 1.486 0.16% 0.002µs 1 200
normalization/normalize_name/normalize_name/bad-name throughput 53249169.561op/s 53598705.877op/s ± 86159.792op/s 53611884.943op/s ± 51201.109op/s 53655527.199op/s 53723140.028op/s 53749110.509op/s 53773240.977op/s 0.30% -0.864 1.446 0.16% 6092.417op/s 1 200
normalization/normalize_name/normalize_name/good execution_time 10.821µs 10.948µs ± 0.103µs 10.945µs ± 0.023µs 10.971µs 11.005µs 11.029µs 12.248µs 11.90% 10.181 127.621 0.93% 0.007µs 1 200
normalization/normalize_name/normalize_name/good throughput 81645470.247op/s 91345950.073op/s ± 783552.931op/s 91365150.071op/s ± 193366.033op/s 91539642.222op/s 92146396.825op/s 92331645.985op/s 92414608.901op/s 1.15% -9.449 115.835 0.86% 55405.559op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... execution_time [209.072µs; 209.111µs] or [-0.009%; +0.009%] None None None
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... throughput [4782150.156op/s; 4783050.252op/s] or [-0.009%; +0.009%] None None None
normalization/normalize_name/normalize_name/bad-name execution_time [18.653µs; 18.661µs] or [-0.022%; +0.022%] None None None
normalization/normalize_name/normalize_name/bad-name throughput [53586764.958op/s; 53610646.795op/s] or [-0.022%; +0.022%] None None None
normalization/normalize_name/normalize_name/good execution_time [10.934µs; 10.962µs] or [-0.130%; +0.130%] None None None
normalization/normalize_name/normalize_name/good throughput [91237357.173op/s; 91454542.973op/s] or [-0.119%; +0.119%] None None None

Baseline

Omitted due to size.

Some(x) => Some(Duration::from_nanos((*x) as u64)),
};
old_profile.serialize_into_compressed_pprof(end_time, duration)
old_profile.serialize_into_compressed_pprof(end_time, None)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this function need to take a duration?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think PHP is using this, at least that's why it was added originally; I didn't check yet if that's still the case 👀

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@ivoanjo ivoanjo enabled auto-merge (squash) March 27, 2025 18:07
@ivoanjo ivoanjo merged commit b982165 into main Mar 27, 2025
34 checks passed
@ivoanjo ivoanjo deleted the ivoanjo/prof-11524-fix-serialize-start-time branch March 27, 2025 18:13
Comment on lines 762 to +767
if let Some(start_time) = start_time {
profile.set_start_time(start_time.into())?;
}

let old_profile = profile.reset_and_return_previous()?;

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I find this clearer;

Suggested change
if let Some(start_time) = start_time {
profile.set_start_time(start_time.into())?;
}
let old_profile = profile.reset_and_return_previous()?;
let old_profile = profile.reset_and_return_previous()?;
if let Some(start_time) = start_time {
old_profile.set_start_time(start_time.into())?;
}

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I missed this suggestion before the auto-merged kicked in, but I'll open a separate PR with it.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Opened #987 with this change.

ivoanjo added a commit that referenced this pull request Mar 31, 2025
**What does this PR do?**

This PR applies a suggestion from
#963 (comment)
to set the `start_time` after obtaining the old profile.

This will hopefully make it more clear that the `start_time` is used
for the old profile, not the new one.

**Motivation:**

Make code more readable.

**Additional Notes:**

N/A

**How to test the change?**

Existing test coverage should be enough to validate this change
(for instance, the Ruby profiler test suite explicitly tests the
timestamps on profiles).
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
profiling Relates to the profiling* modules.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants