Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

imthresh, ncc, ftshow, imgaussiannoise, fixed imfilter #557

Merged
merged 7 commits into from
Mar 9, 2012
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
73 changes: 67 additions & 6 deletions examples/image.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,13 +52,17 @@ function ppmwrite(img, file::String)
error("unsupported array dimensions")
end
elseif eltype(img) <: Float
if ndims(img) == 3 && size(img,3) == 3
# prevent overflow
a = copy(img)
a[img > 1] = 1
a[img < 0] = 0
if ndims(a) == 3 && size(a,3) == 3
for i=1:n, j=1:m, k=1:3
write(s, uint8(255*img[i,j,k]))
write(s, uint8(255*a[i,j,k]))
end
elseif ndims(img) == 2
elseif ndims(a) == 2
for i=1:n, j=1:m, k=1:3
write(s, uint8(255*img[i,j]))
write(s, uint8(255*a[i,j]))
end
else
error("unsupported array dimensions")
Expand Down Expand Up @@ -240,10 +244,20 @@ end
# normalized by Array size
sadn{T}(A::Array{T}, B::Array{T}) = sad(A, B)/numel(A)

# normalized cross correlation
function ncc{T}(A::Array{T}, B::Array{T})
Am = A[:]-mean(A[:])
Bm = B[:]-mean(B[:])
res = ((Am/norm(Am))'*(Bm/norm(Bm)))
return res
end

function imfilter{T}(img::Matrix{T}, filter::Matrix{T}, border::String, value)
si, sf = size(img), size(filter)
A = zeros(T, si[1]+sf[1]-1, si[2]+sf[2]-1)
s1, s2 = int((sf[1]-1)/2), int((sf[2]-1)/2)
# correlation instead of convolution
filter = fliplr(fliplr(filter).')
if border == "replicate"
A[s1+1:end-s1, s2+1:end-s2] = img
A[s1+1:end-s1, 1:s2] = repmat(img[:,1], 1, s2)
Expand Down Expand Up @@ -288,9 +302,32 @@ function imfilter{T}(img::Matrix{T}, filter::Matrix{T}, border::String, value)
separable = separable && (abs(S[i]) < 10^-7)
end
if separable
C = conv2(squeeze(U[:,1]*sqrt(S[1])), squeeze(V[1,:]*sqrt(S[1])), A)
# conv2 isn't suitable for this (kernel center should be the actual center of the kernel)
#C = conv2(squeeze(U[:,1]*sqrt(S[1])), squeeze(V[1,:]*sqrt(S[1])), A)
x = squeeze(U[:,1]*sqrt(S[1]))
y = squeeze(V[1,:]*sqrt(S[1]))
sa = size(A)
m = length(y)+sa[1]
n = length(x)+sa[2]
B = zeros(T, m, n)
B[int((length(x))/2)+1:sa[1]+int((length(x))/2),int((length(y))/2)+1:sa[2]+int((length(y))/2)] = A
y = fft([zeros(T,int((m-length(y)-1)/2)); y; zeros(T,int((m-length(y)-1)/2))])./m
x = fft([zeros(T,int((m-length(x)-1)/2)); x; zeros(T,int((n-length(x)-1)/2))])./n
C = fftshift(ifft2(fft2(B) .* (y * x.')))
if T <: Real
C = real(C)
end
else
C = conv2(A, filter)
#C = conv2(A, filter)
sa, sb = size(A), size(filter)
At = zeros(T, sa[1]+sb[1], sa[2]+sb[2])
Bt = zeros(T, sa[1]+sb[1], sa[2]+sb[2])
At[int(end/2-sa[1]/2)+1:int(end/2+sa[1]/2), int(end/2-sa[2]/2)+1:int(end/2+sa[2]/2)] = A
Bt[int(end/2-sb[1]/2)+1:int(end/2+sb[1]/2), int(end/2-sb[2]/2)+1:int(end/2+sb[2]/2)] = filter
C = fftshift(ifft2(fft2(At).*fft2(Bt))./((sa[1]+sb[1]-1)*(sa[2]+sb[2]-1)))
if T <: Real
C = real(C)
end
end
sc = size(C)
out = C[int(sc[1]/2-si[1]/2):int(sc[1]/2+si[1]/2)-1, int(sc[2]/2-si[2]/2):int(sc[2]/2+si[2]/2)-1]
Expand All @@ -317,3 +354,27 @@ function imlineardiffusion{T}(img::Array{T,2}, dt::Float, iterations::Integer)
end
u
end

function imthresh{T}(img::Array{T,2}, threshold::Float)
if !(0.0 <= threshold <= 1.0)
error("threshold must be between 0 and 1")
end
img_max, img_min = max(img), min(img)
tmp = zeros(T, size(img))
# matter of taste?
#tmp[img >= threshold*(img_max-img_min)+img_min] = 1
tmp[img >= threshold] = 1
return tmp
end

function imgaussiannoise{T}(img::Array{T}, variance::Number, mean::Number)
tmp = img + sqrt(variance)*randn(size(img)) + mean
return tmp
end

imgaussiannoise{T}(img::Array{T}, variance::Number) = imgaussiannoise(img, variance, 0)
imgaussiannoise{T}(img::Array{T}) = imgaussiannoise(img, 0.01, 0)

# 'illustrates' fourier transform
ftshow{T}(A::Array{T,2}) = imshow(log(1+abs(fftshift(A))),[])