Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RFC:Add generic Cholesky decomposition and make Cholesky parametric on matrix type #7236

Merged
merged 1 commit into from
Aug 14, 2014
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions base/linalg.jl
Original file line number Diff line number Diff line change
@@ -198,6 +198,7 @@ include("linalg/dense.jl")
include("linalg/tridiag.jl")
include("linalg/triangular.jl")
include("linalg/factorization.jl")
include("linalg/cholesky.jl")
include("linalg/lu.jl")

include("linalg/bunchkaufman.jl")
181 changes: 181 additions & 0 deletions base/linalg/cholesky.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
##########################
# Cholesky Factorization #
##########################
immutable Cholesky{T,S<:AbstractMatrix{T},UpLo} <: Factorization{T}
UL::S
end
immutable CholeskyPivoted{T} <: Factorization{T}
UL::Matrix{T}
uplo::Char
piv::Vector{BlasInt}
rank::BlasInt
tol::Real
info::BlasInt
end

function chol!{T<:BlasFloat}(A::StridedMatrix{T}, uplo::Symbol=:U)
C, info = LAPACK.potrf!(string(uplo)[1], A)
return @assertposdef Triangular(C, uplo, false) info
end

function chol!{T}(A::AbstractMatrix{T}, uplo::Symbol=:U)
n = chksquare(A)
@inbounds begin
if uplo == :L
for k = 1:n
for i = 1:k - 1
A[k,k] -= A[k,i]*A[k,i]'
end
A[k,k] = chol!(A[k,k], uplo)
AkkInv = inv(A[k,k]')
for j = 1:k
for i = k + 1:n
j == 1 && (A[i,k] = A[i,k]*AkkInv)
j < k && (A[i,k] -= A[i,j]*A[k,j]'*AkkInv)
end
end
end
elseif uplo == :U
for k = 1:n
for i = 1:k - 1
A[k,k] -= A[i,k]'A[i,k]
end
A[k,k] = chol!(A[k,k], uplo)
AkkInv = inv(A[k,k])
for j = k + 1:n
for i = 1:k - 1
A[k,j] -= A[i,k]'A[i,j]
end
A[k,j] = A[k,k]'\A[k,j]
end
end
else
throw(ArgumentError("uplo must be either :U or :L but was $(uplo)"))
end
end
return Triangular(A, uplo, false)
end

function cholfact!{T<:BlasFloat}(A::StridedMatrix{T}, uplo::Symbol=:U; pivot=false, tol=0.0)
uplochar = string(uplo)[1]
if pivot
A, piv, rank, info = LAPACK.pstrf!(uplochar, A, tol)
return CholeskyPivoted{T}(A, uplochar, piv, rank, tol, info)
end
return Cholesky{T,typeof(A),uplo}(chol!(A, uplo).data)
end
cholfact!(A::AbstractMatrix, uplo::Symbol=:U) = Cholesky{eltype(A),typeof(A),uplo}(chol!(A, uplo).data)

cholfact{T<:BlasFloat}(A::StridedMatrix{T}, uplo::Symbol=:U; pivot=false, tol=0.0) = cholfact!(copy(A), uplo, pivot=pivot, tol=tol)
function cholfact{T}(A::StridedMatrix{T}, uplo::Symbol=:U; pivot=false, tol=0.0)
S = promote_type(typeof(chol(one(T))),Float32)
S <: BlasFloat && return cholfact!(convert(AbstractMatrix{S}, A), uplo, pivot = pivot, tol = tol)
pivot && throw(ArgumentError("pivot only supported for Float32, Float64, Complex{Float32} and Complex{Float64}"))
S != T && return cholfact!(convert(AbstractMatrix{S}, A), uplo)
return cholfact!(copy(A), uplo)
end
function cholfact(x::Number, uplo::Symbol=:U)
xf = fill(chol!(x), 1, 1)
Cholesky{:U, eltype(xf), typeof(xf)}(xf)
end

chol(A::AbstractMatrix, uplo::Symbol=:U) = Triangular(chol!(copy(A), uplo), uplo, false)
function chol!(x::Number, uplo::Symbol=:U)
rx = real(x)
rx == abs(x) || throw(DomainError())
rxr = sqrt(rx)
convert(promote_type(typeof(x), typeof(rxr)), rxr)
end
chol(x::Number, uplo::Symbol=:U) = chol!(x, uplo)

function convert{Tnew,Told,S,UpLo}(::Type{Cholesky{Tnew}},C::Cholesky{Told,S,UpLo})
Cnew = convert(AbstractMatrix{Tnew}, C.UL)
Cholesky{Tnew, typeof(Cnew), UpLo}(Cnew)
end
function convert{T,S,UpLo}(::Type{Cholesky{T,S,UpLo}},C::Cholesky)
Cnew = convert(AbstractMatrix{T}, C.UL)
Cholesky{T, typeof(Cnew), UpLo}(Cnew)
end
convert{T}(::Type{Factorization{T}}, C::Cholesky) = convert(Cholesky{T}, C)
convert{T}(::Type{CholeskyPivoted{T}},C::CholeskyPivoted) = CholeskyPivoted(convert(AbstractMatrix{T},C.UL),C.uplo,C.piv,C.rank,C.tol,C.info)
convert{T}(::Type{Factorization{T}}, C::CholeskyPivoted) = convert(CholeskyPivoted{T}, C)

full{T,S}(C::Cholesky{T,S,:U}) = C[:U]'C[:U]
full{T,S}(C::Cholesky{T,S,:L}) = C[:L]*C[:L]'

size(C::Union(Cholesky, CholeskyPivoted)) = size(C.UL)
size(C::Union(Cholesky, CholeskyPivoted), d::Integer) = size(C.UL,d)

function getindex{T,S,UpLo}(C::Cholesky{T,S,UpLo}, d::Symbol)
d == :U && return Triangular(UpLo == d ? C.UL : C.UL',:U)
d == :L && return Triangular(UpLo == d ? C.UL : C.UL',:L)
d == :UL && return Triangular(C.UL, UpLo)
throw(KeyError(d))
end
function getindex{T<:BlasFloat}(C::CholeskyPivoted{T}, d::Symbol)
d == :U && return Triangular(symbol(C.uplo) == d ? C.UL : C.UL', :U)
d == :L && return Triangular(symbol(C.uplo) == d ? C.UL : C.UL', :L)
d == :p && return C.piv
if d == :P
n = size(C, 1)
P = zeros(T, n, n)
for i=1:n
P[C.piv[i],i] = one(T)
end
return P
end
throw(KeyError(d))
end

show{T,S<:AbstractMatrix,UpLo}(io::IO, C::Cholesky{T,S,UpLo}) = (println("$(typeof(C)) with factor:");show(io,C[UpLo]))

A_ldiv_B!{T<:BlasFloat,S<:AbstractMatrix}(C::Cholesky{T,S,:U}, B::StridedVecOrMat{T}) = LAPACK.potrs!('U', C.UL, B)
A_ldiv_B!{T<:BlasFloat,S<:AbstractMatrix}(C::Cholesky{T,S,:L}, B::StridedVecOrMat{T}) = LAPACK.potrs!('L', C.UL, B)
A_ldiv_B!{T,S<:AbstractMatrix}(C::Cholesky{T,S,:L}, B::StridedVecOrMat) = Ac_ldiv_B!(Triangular(C.UL, :L, false), A_ldiv_B!(Triangular(C.UL, :L, false), B))
A_ldiv_B!{T,S<:AbstractMatrix}(C::Cholesky{T,S,:U}, B::StridedVecOrMat) = A_ldiv_B!(Triangular(C.UL, :U, false), Ac_ldiv_B!(Triangular(C.UL, :U, false), B))

function A_ldiv_B!{T<:BlasFloat}(C::CholeskyPivoted{T}, B::StridedVector{T})
chkfullrank(C)
ipermute!(LAPACK.potrs!(C.uplo, C.UL, permute!(B, C.piv)), C.piv)
end
function A_ldiv_B!{T<:BlasFloat}(C::CholeskyPivoted{T}, B::StridedMatrix{T})
chkfullrank(C)
n = size(C, 1)
for i=1:size(B, 2)
permute!(sub(B, 1:n, i), C.piv)
end
LAPACK.potrs!(C.uplo, C.UL, B)
for i=1:size(B, 2)
ipermute!(sub(B, 1:n, i), C.piv)
end
B
end
A_ldiv_B!(C::CholeskyPivoted, B::StridedVector) = C.uplo=='L' ? Ac_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), A_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), B[C.piv]))[invperm(C.piv)] : A_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), Ac_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), B[C.piv]))[invperm(C.piv)]
A_ldiv_B!(C::CholeskyPivoted, B::StridedMatrix) = C.uplo=='L' ? Ac_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), A_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), B[C.piv,:]))[invperm(C.piv),:] : A_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), Ac_ldiv_B!(Triangular(C.UL, symbol(C.uplo), false), B[C.piv,:]))[invperm(C.piv),:]

function det{T,S,UpLo}(C::Cholesky{T,S,UpLo})
dd = one(T)
for i in 1:size(C.UL,1) dd *= abs2(C.UL[i,i]) end
dd
end

det{T}(C::CholeskyPivoted{T}) = C.rank<size(C.UL,1) ? real(zero(T)) : prod(abs2(diag(C.UL)))

function logdet{T,S,UpLo}(C::Cholesky{T,S,UpLo})
dd = zero(T)
for i in 1:size(C.UL,1) dd += log(C.UL[i,i]) end
dd + dd # instead of 2.0dd which can change the type
end

inv{T<:BlasFloat,S<:AbstractMatrix}(C::Cholesky{T,S,:U}) = copytri!(LAPACK.potri!('U', copy(C.UL)), 'U', true)
inv{T<:BlasFloat,S<:AbstractMatrix}(C::Cholesky{T,S,:L}) = copytri!(LAPACK.potri!('L', copy(C.UL)), 'L', true)

function inv(C::CholeskyPivoted)
chkfullrank(C)
ipiv = invperm(C.piv)
copytri!(LAPACK.potri!(C.uplo, copy(C.UL)), C.uplo, true)[ipiv, ipiv]
end

chkfullrank(C::CholeskyPivoted) = C.rank<size(C.UL, 1) && throw(RankDeficientException(C.info))

rank(C::CholeskyPivoted) = C.rank
8 changes: 4 additions & 4 deletions base/linalg/dense.jl
Original file line number Diff line number Diff line change
@@ -60,13 +60,13 @@ vecnorm1{T<:BlasReal}(x::Union(Array{T},StridedVector{T})) =
vecnorm2{T<:BlasFloat}(x::Union(Array{T},StridedVector{T})) =
length(x) < NRM2_CUTOFF ? generic_vecnorm2(x) : BLAS.nrm2(x)

function triu!{T}(M::Matrix{T}, k::Integer)
function triu!(M::AbstractMatrix, k::Integer)
m, n = size(M)
idx = 1
for j = 0:n-1
ii = min(max(0, j+1-k), m)
for i = (idx+ii):(idx+m-1)
M[i] = zero(T)
M[i] = zero(M[i])
end
idx += m
end
@@ -75,13 +75,13 @@ end

triu(M::Matrix, k::Integer) = triu!(copy(M), k)

function tril!{T}(M::Matrix{T}, k::Integer)
function tril!(M::AbstractMatrix, k::Integer)
m, n = size(M)
idx = 1
for j = 0:n-1
ii = min(max(0, j-k), m)
for i = idx:(idx+ii-1)
M[i] = zero(T)
M[i] = zero(M[i])
end
idx += m
end
120 changes: 0 additions & 120 deletions base/linalg/factorization.jl
Original file line number Diff line number Diff line change
@@ -10,126 +10,6 @@ macro assertnonsingular(A, info)
:(($info)==0 ? $A : throw(SingularException($info)))
end

##########################
# Cholesky Factorization #
##########################
immutable Cholesky{T} <: Factorization{T}
UL::Matrix{T}
uplo::Char
end
immutable CholeskyPivoted{T} <: Factorization{T}
UL::Matrix{T}
uplo::Char
piv::Vector{BlasInt}
rank::BlasInt
tol::Real
info::BlasInt
end

function cholfact!{T<:BlasFloat}(A::StridedMatrix{T}, uplo::Symbol=:U; pivot=false, tol=0.0)
uplochar = string(uplo)[1]
if pivot
A, piv, rank, info = LAPACK.pstrf!(uplochar, A, tol)
return CholeskyPivoted{T}(A, uplochar, piv, rank, tol, info)
else
C, info = LAPACK.potrf!(uplochar, A)
return @assertposdef Cholesky(C, uplochar) info
end
end
cholfact{T<:BlasFloat}(A::StridedMatrix{T}, uplo::Symbol=:U; pivot=false, tol=0.0) = cholfact!(copy(A), uplo, pivot=pivot, tol=tol)
cholfact{T}(A::StridedMatrix{T}, uplo::Symbol=:U; pivot=false, tol=0.0) = (S = promote_type(typeof(sqrt(one(T))),Float32); S != T ? cholfact!(convert(AbstractMatrix{S},A), uplo, pivot=pivot, tol=tol) : cholfact!(copy(A), uplo, pivot=pivot, tol=tol)) # When julia Cholesky has been implemented, the promotion should be changed.
cholfact(x::Number) = @assertposdef Cholesky(fill(sqrt(x), 1, 1), :U) !(imag(x) == 0 && real(x) > 0)

chol(A::Union(Number, AbstractMatrix), uplo::Symbol) = cholfact(A, uplo)[uplo]
chol(A::Union(Number, AbstractMatrix)) = triu!(cholfact(A, :U).UL)

convert{T}(::Type{Cholesky{T}},C::Cholesky) = Cholesky(convert(AbstractMatrix{T},C.UL),C.uplo)
convert{T}(::Type{Factorization{T}}, C::Cholesky) = convert(Cholesky{T}, C)
convert{T}(::Type{CholeskyPivoted{T}},C::CholeskyPivoted) = CholeskyPivoted(convert(AbstractMatrix{T},C.UL),C.uplo,C.piv,C.rank,C.tol,C.info)
convert{T}(::Type{Factorization{T}}, C::CholeskyPivoted) = convert(CholeskyPivoted{T}, C)

function full{T<:BlasFloat}(C::Cholesky{T})
if C.uplo == 'U'
BLAS.trmm!('R', C.uplo, 'N', 'N', one(T), C.UL, tril!(C.UL'))
else
BLAS.trmm!('L', C.uplo, 'N', 'N', one(T), C.UL, triu!(C.UL'))
end
end

size(C::Union(Cholesky, CholeskyPivoted)) = size(C.UL)
size(C::Union(Cholesky, CholeskyPivoted), d::Integer) = size(C.UL,d)

function getindex(C::Cholesky, d::Symbol)
d == :U && return Triangular(triu!(symbol(C.uplo) == d ? C.UL : C.UL'),:U)
d == :L && return Triangular(tril!(symbol(C.uplo) == d ? C.UL : C.UL'),:L)
d == :UL && return Triangular(C.UL, symbol(C.uplo))
throw(KeyError(d))
end
function getindex{T<:BlasFloat}(C::CholeskyPivoted{T}, d::Symbol)
d == :U && return triu!(symbol(C.uplo) == d ? C.UL : C.UL')
d == :L && return tril!(symbol(C.uplo) == d ? C.UL : C.UL')
d == :p && return C.piv
if d == :P
n = size(C, 1)
P = zeros(T, n, n)
for i=1:n
P[C.piv[i],i] = one(T)
end
return P
end
throw(KeyError(d))
end

show(io::IO, C::Cholesky) = (println(io,"$(typeof(C)) with factor:");show(io,C[symbol(C.uplo)]))

A_ldiv_B!{T<:BlasFloat}(C::Cholesky{T}, B::StridedVecOrMat{T}) = LAPACK.potrs!(C.uplo, C.UL, B)
A_ldiv_B!(C::Cholesky, B::StridedVecOrMat) = C.uplo=='L' ? Ac_ldiv_B!(Triangular(C.UL,C.uplo,'N'), A_ldiv_B!(Triangular(C.UL,C.uplo,'N'), B)) : A_ldiv_B!(Triangular(C.UL,C.uplo,'N'), Ac_ldiv_B!(Triangular(C.UL,C.uplo,'N'), B))

function A_ldiv_B!{T<:BlasFloat}(C::CholeskyPivoted{T}, B::StridedVector{T})
chkfullrank(C)
ipermute!(LAPACK.potrs!(C.uplo, C.UL, permute!(B, C.piv)), C.piv)
end
function A_ldiv_B!{T<:BlasFloat}(C::CholeskyPivoted{T}, B::StridedMatrix{T})
chkfullrank(C)
n = size(C, 1)
for i=1:size(B, 2)
permute!(sub(B, 1:n, i), C.piv)
end
LAPACK.potrs!(C.uplo, C.UL, B)
for i=1:size(B, 2)
ipermute!(sub(B, 1:n, i), C.piv)
end
B
end
A_ldiv_B!(C::CholeskyPivoted, B::StridedVector) = C.uplo=='L' ? Ac_ldiv_B!(Triangular(C.UL,C.uplo,'N'), A_ldiv_B!(Triangular(C.UL,C.uplo,'N'), B[C.piv]))[invperm(C.piv)] : A_ldiv_B!(Triangular(C.UL,C.uplo,'N'), Ac_ldiv_B!(Triangular(C.UL,C.uplo,'N'), B[C.piv]))[invperm(C.piv)]
A_ldiv_B!(C::CholeskyPivoted, B::StridedMatrix) = C.uplo=='L' ? Ac_ldiv_B!(Triangular(C.UL,C.uplo,'N'), A_ldiv_B!(Triangular(C.UL,C.uplo,'N'), B[C.piv,:]))[invperm(C.piv),:] : A_ldiv_B!(Triangular(C.UL,C.uplo,'N'), Ac_ldiv_B!(Triangular(C.UL,C.uplo,'N'), B[C.piv,:]))[invperm(C.piv),:]

function det{T}(C::Cholesky{T})
dd = one(T)
for i in 1:size(C.UL,1) dd *= abs2(C.UL[i,i]) end
dd
end

det{T}(C::CholeskyPivoted{T}) = C.rank<size(C.UL,1) ? real(zero(T)) : prod(abs2(diag(C.UL)))

function logdet{T}(C::Cholesky{T})
dd = zero(T)
for i in 1:size(C.UL,1) dd += log(C.UL[i,i]) end
dd + dd # instead of 2.0dd which can change the type
end

inv(C::Cholesky) = copytri!(LAPACK.potri!(C.uplo, copy(C.UL)), C.uplo, true)

function inv(C::CholeskyPivoted)
chkfullrank(C)
ipiv = invperm(C.piv)
copytri!(LAPACK.potri!(C.uplo, copy(C.UL)), C.uplo, true)[ipiv, ipiv]
end

chkfullrank(C::CholeskyPivoted) = C.rank<size(C.UL, 1) && throw(RankDeficientException(C.info))

rank(C::CholeskyPivoted) = C.rank

####################
# QR Factorization #
####################
10 changes: 5 additions & 5 deletions base/linalg/triangular.jl
Original file line number Diff line number Diff line change
@@ -133,11 +133,11 @@ function similar{T,S,UpLo,IsUnit,Tnew}(A::Triangular{T,S,UpLo,IsUnit}, ::Type{Tn
return Triangular{Tnew, typeof(A), UpLo, IsUnit}(A)
end

getindex{T,S}(A::Triangular{T,S,:L,true}, i::Integer, j::Integer) = i == j ? one(T) : (i > j ? A.data[i,j] : zero(T))
getindex{T,S}(A::Triangular{T,S,:L,false}, i::Integer, j::Integer) = i >= j ? A.data[i,j] : zero(T)
getindex{T,S}(A::Triangular{T,S,:U,true}, i::Integer, j::Integer) = i == j ? one(T) : (i < j ? A.data[i,j] : zero(T))
getindex{T,S}(A::Triangular{T,S,:U,false}, i::Integer, j::Integer) = i <= j ? A.data[i,j] : zero(T)
getindex{T,S,UpLo,IsUnit}(A::Triangular{T,S,UpLo,IsUnit}, i::Integer) = ((m, n) = divrem(i - 1, size(A,1)); A[m + 1, n + 1])
getindex{T,S}(A::Triangular{T,S,:L,true}, i::Integer, j::Integer) = i == j ? one(T) : (i > j ? A.data[i,j] : zero(A.data[i,j]))
getindex{T,S}(A::Triangular{T,S,:L,false}, i::Integer, j::Integer) = i >= j ? A.data[i,j] : zero(A.data[i,j])
getindex{T,S}(A::Triangular{T,S,:U,true}, i::Integer, j::Integer) = i == j ? one(T) : (i < j ? A.data[i,j] : zero(A.data[i,j]))
getindex{T,S}(A::Triangular{T,S,:U,false}, i::Integer, j::Integer) = i <= j ? A.data[i,j] : zero(A.data[i,j])
getindex(A::Triangular, i::Integer) = ((m, n) = divrem(i - 1, size(A,1)); A[m + 1, n + 1])

istril{T,S,UpLo,IsUnit}(A::Triangular{T,S,UpLo,IsUnit}) = UpLo == :L
istriu{T,S,UpLo,IsUnit}(A::Triangular{T,S,UpLo,IsUnit}) = UpLo == :U
55 changes: 27 additions & 28 deletions test/linalg1.jl
Original file line number Diff line number Diff line change
@@ -37,38 +37,37 @@ for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
debug && println("\ntype of a: ", eltya, " type of b: ", eltyb, "\n")

debug && println("(Automatic) upper Cholesky factor")
if eltya != BigFloat && eltyb != BigFloat # Note! Need to implement cholesky decomposition in julia
capd = factorize(apd)
r = capd[:U]
κ = cond(apd) #condition number

#Test error bound on reconstruction of matrix: LAWNS 14, Lemma 2.1
E = abs(apd - r'*r)
for i=1:n, j=1:n
@test E[i,j] <= (n+1/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
E = abs(apd - full(capd))
for i=1:n, j=1:n
@test E[i,j] <= (n+1/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end

capd = factorize(apd)
r = capd[:U]
κ = cond(apd, 1) #condition number

#Test error bound on reconstruction of matrix: LAWNS 14, Lemma 2.1
E = abs(apd - r'*r)
for i=1:n, j=1:n
@test E[i,j] <= (n+1/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
E = abs(apd - full(capd))
for i=1:n, j=1:n
@test E[i,j] <= (n+1/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end

#Test error bound on linear solver: LAWNS 14, Theorem 2.1
#This is a surprisingly loose bound...
x = capd\b
@test norm(x-apd\b)/norm(x) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
@test norm(apd*x-b)/norm(b) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
#Test error bound on linear solver: LAWNS 14, Theorem 2.1
#This is a surprisingly loose bound...
x = capd\b
@test norm(x-apd\b,1)/norm(x,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
@test norm(apd*x-b,1)/norm(b,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ

@test_approx_eq apd * inv(capd) eye(n)
@test norm(a*(capd\(a'*b)) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit
@test abs((det(capd) - det(apd))/det(capd)) <= ε*κ*n # Ad hoc, but statistically verified, revisit
@test_approx_eq logdet(capd) log(det(capd)) # logdet is less likely to overflow
@test_approx_eq apd * inv(capd) eye(n)
@test norm(a*(capd\(a'*b)) - b,1)/norm(b,1) <= ε*κ*n # Ad hoc, revisit
@test abs((det(capd) - det(apd))/det(capd)) <= ε*κ*n # Ad hoc, but statistically verified, revisit
@test_approx_eq logdet(capd) log(det(capd)) # logdet is less likely to overflow

debug && println("lower Cholesky factor")
lapd = cholfact(apd, :L)
@test_approx_eq full(lapd) apd
l = lapd[:L]
@test_approx_eq l*l' apd
end
lapd = cholfact(apd, :L)
@test_approx_eq full(lapd) apd
l = lapd[:L]
@test_approx_eq l*l' apd

debug && println("pivoted Choleksy decomposition")
if eltya != BigFloat && eltyb != BigFloat # Note! Need to implement pivoted cholesky decomposition in julia
13 changes: 13 additions & 0 deletions test/linalg4.jl
Original file line number Diff line number Diff line change
@@ -331,6 +331,19 @@ for newtype in [Diagonal, Bidiagonal, SymTridiagonal, Triangular, Matrix]
@test full(convert(newtype, A)) == full(A)
end

# Test generic cholfact!
for elty in (Float32, Float64, Complex{Float32}, Complex{Float64})
if elty <: Complex
A = complex(randn(5,5), randn(5,5))
else
A = randn(5,5)
end
A = convert(Matrix{elty}, A'A)
for ul in (:U, :L)
@test_approx_eq full(cholfact(A, ul)[ul]) full(invoke(Base.LinAlg.chol!, (AbstractMatrix,Symbol),copy(A), ul))
end
end

# Issue #7886
x, r = LAPACK.gelsy!([0 1; 0 2; 0 3.], [2, 4, 6.])
@test_approx_eq x [0,2]