Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

removed decorators #1079

Merged
merged 1 commit into from
Mar 6, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion docs/source/tpu.rst
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,6 @@ train_dataloader (and val, train) code as follows.

import torch_xla.core.xla_model as xm

@pl.data_loader
def train_dataloader(self):
dataset = MNIST(
os.getcwd(),
Expand Down
1 change: 0 additions & 1 deletion pl_examples/domain_templates/gan.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,6 @@ def configure_optimizers(self):
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
return [opt_g, opt_d], []

@data_loader
def train_dataloader(self):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
Expand Down
3 changes: 0 additions & 3 deletions pl_examples/full_examples/imagenet/imagenet_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@

import pytorch_lightning as pl
from pytorch_lightning.core import LightningModule
from pytorch_lightning.core import data_loader

# pull out resnet names from torchvision models
MODEL_NAMES = sorted(
Expand Down Expand Up @@ -132,7 +131,6 @@ def configure_optimizers(self):
scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.1)
return [optimizer], [scheduler]

@data_loader
def train_dataloader(self):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
Expand Down Expand Up @@ -163,7 +161,6 @@ def train_dataloader(self):
)
return train_loader

@data_loader
def val_dataloader(self):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
Expand Down
4 changes: 0 additions & 4 deletions pytorch_lightning/core/lightning.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
import torch.distributed as dist
from torch.optim import Adam

from pytorch_lightning.core.decorators import data_loader
from pytorch_lightning.core.grads import GradInformation
from pytorch_lightning.core.hooks import ModelHooks
from pytorch_lightning.core.saving import ModelIO, load_hparams_from_tags_csv
Expand Down Expand Up @@ -1139,7 +1138,6 @@ def train_dataloader(self):
"""
return None

@data_loader
def tng_dataloader(self): # todo: remove in v1.0.0
"""Implement a PyTorch DataLoader.

Expand Down Expand Up @@ -1239,7 +1237,6 @@ def val_dataloader(self):

.. code-block:: python

@pl.data_loader
def val_dataloader(self):
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (1.0,))])
Expand All @@ -1254,7 +1251,6 @@ def val_dataloader(self):
return loader

# can also return multiple dataloaders
@pl.data_loader
def val_dataloader(self):
return [loader_a, loader_b, ..., loader_n]

Expand Down
3 changes: 0 additions & 3 deletions tests/models/debug.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,14 +41,11 @@ def validation_epoch_end(self, outputs):
def configure_optimizers(self):
return [torch.optim.Adam(self.parameters(), lr=0.02)]

@pl.data_loader
def train_dataloader(self):
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)

@pl.data_loader
def val_dataloader(self):
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)

@pl.data_loader
def test_dataloader(self):
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)