Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixed extra dataloader bug #1196

Merged
merged 14 commits into from
Apr 2, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- `Trainer.add_argparse_args` classmethod fixed. Now it adds a type for the arguments ([#1147](https://github.com/PyTorchLightning/pytorch-lightning/pull/1147)).
- Fixed bug related to type cheking of `ReduceLROnPlateau` lr schedulers([#1114](https://github.com/PyTorchLightning/pytorch-lightning/issues/1114))
- Fixed a bug to ensure lightning checkpoints to be backward compatible ([#1132](https://github.com/PyTorchLightning/pytorch-lightning/pull/1132))
- Fixed a bug that created an extra dataloader with active `reload_dataloaders_every_epoch` ([#1181](https://github.com/PyTorchLightning/pytorch-lightning/issues/1181)
- Fixed all warnings and errors in the docs build process ([#1191](https://github.com/PyTorchLightning/pytorch-lightning/pull/1191))
- Fixed an issue where `val_percent_check=0` would not disable validation ([#1251](https://github.com/PyTorchLightning/pytorch-lightning/pull/1251))

Expand Down
13 changes: 11 additions & 2 deletions pytorch_lightning/trainer/evaluation_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,14 +338,14 @@ def run_evaluation(self, test_mode: bool = False):

# select dataloaders
if test_mode:
if self.reload_dataloaders_every_epoch or self.test_dataloaders is None:
if self.test_dataloaders is None:
self.reset_test_dataloader(model)

dataloaders = self.test_dataloaders
max_batches = self.num_test_batches
else:
# val
if self.reload_dataloaders_every_epoch or self.val_dataloaders is None:
if self.val_dataloaders is None:
self.reset_val_dataloader(model)

dataloaders = self.val_dataloaders
Expand Down Expand Up @@ -399,6 +399,15 @@ def run_evaluation(self, test_mode: bool = False):
else:
self.val_progress_bar.close()

# eventual dataset reloading
if test_mode:
if self.reload_dataloaders_every_epoch:
self.reset_test_dataloader(model)
else:
# val
if self.reload_dataloaders_every_epoch:
self.reset_val_dataloader(model)

# Validation/Test end callbacks
if test_mode:
self.on_test_end()
Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/trainer/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -275,7 +275,6 @@ def __init__(
" and this method will be removed in v0.8.0", DeprecationWarning)
self.gradient_clip = gradient_clip

self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch
self.progress_bar_refresh_rate = progress_bar_refresh_rate
self.check_val_every_n_epoch = check_val_every_n_epoch
self.track_grad_norm = track_grad_norm
Expand Down Expand Up @@ -320,6 +319,8 @@ def __init__(
" NaN grads will be printed automatically when detected.",
DeprecationWarning)

self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch

self.truncated_bptt_steps = truncated_bptt_steps
self.resume_from_checkpoint = resume_from_checkpoint
self.shown_warnings = set()
Expand Down
11 changes: 6 additions & 5 deletions pytorch_lightning/trainer/training_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -289,7 +289,9 @@ def train(self):
model = self.get_model()

# load data
self.reset_train_dataloader(model)
# if reload_dataloaders_every_epoch, this is moved to the epoch loop
if not self.reload_dataloaders_every_epoch:
self.reset_train_dataloader(model)
self.reset_val_dataloader(model)

# Train start events
Expand All @@ -305,6 +307,9 @@ def train(self):
try:
# run all epochs
for epoch in range(self.current_epoch, self.max_epochs):
# reset train dataloader
if self.reload_dataloaders_every_epoch:
self.reset_train_dataloader(model)
# set seed for distributed sampler (enables shuffling for each epoch)
if self.use_ddp \
and hasattr(self.train_dataloader.sampler, 'set_epoch'):
Expand Down Expand Up @@ -393,10 +398,6 @@ def run_training_epoch(self):
if self.is_function_implemented('on_epoch_start'):
self.get_model().on_epoch_start()

# reset train dataloader
if self.reload_dataloaders_every_epoch:
self.reset_train_dataloader(self.get_model())

# track local dataloader so TPU can wrap each epoch
train_dataloader = self.train_dataloader

Expand Down