Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Doc] Fix the version statement for all example docs #654

Merged
merged 117 commits into from
Nov 22, 2022
Merged
Changes from all commits
Commits
Show all changes
117 commits
Select commit Hold shift + click to select a range
1684b05
first commit for yolov7
ziqi-jin Jul 13, 2022
71c00d9
pybind for yolov7
ziqi-jin Jul 14, 2022
21ab2f9
CPP README.md
ziqi-jin Jul 14, 2022
d63e862
CPP README.md
ziqi-jin Jul 14, 2022
7b3b0e2
modified yolov7.cc
ziqi-jin Jul 14, 2022
d039e80
README.md
ziqi-jin Jul 15, 2022
a34a815
python file modify
ziqi-jin Jul 18, 2022
eb010a8
merge test
ziqi-jin Jul 18, 2022
39f64f2
delete license in fastdeploy/
ziqi-jin Jul 18, 2022
d071b37
repush the conflict part
ziqi-jin Jul 18, 2022
d5026ca
README.md modified
ziqi-jin Jul 18, 2022
fb376ad
README.md modified
ziqi-jin Jul 18, 2022
4b8737c
file path modified
ziqi-jin Jul 18, 2022
ce922a0
file path modified
ziqi-jin Jul 18, 2022
6e00b82
file path modified
ziqi-jin Jul 18, 2022
8c359fb
file path modified
ziqi-jin Jul 18, 2022
906c730
file path modified
ziqi-jin Jul 18, 2022
80c1223
README modified
ziqi-jin Jul 18, 2022
6072757
README modified
ziqi-jin Jul 18, 2022
2c6e6a4
move some helpers to private
ziqi-jin Jul 18, 2022
48136f0
add examples for yolov7
ziqi-jin Jul 18, 2022
6feca92
api.md modified
ziqi-jin Jul 18, 2022
ae70d4f
api.md modified
ziqi-jin Jul 18, 2022
f591b85
api.md modified
ziqi-jin Jul 18, 2022
f0def41
YOLOv7
ziqi-jin Jul 18, 2022
15b9160
yolov7 release link
ziqi-jin Jul 18, 2022
4706e8c
yolov7 release link
ziqi-jin Jul 18, 2022
dc83584
yolov7 release link
ziqi-jin Jul 18, 2022
086debd
copyright
ziqi-jin Jul 18, 2022
4f980b9
change some helpers to private
ziqi-jin Jul 18, 2022
2e61c95
Merge branch 'develop' into develop
ziqi-jin Jul 19, 2022
80beadf
change variables to const and fix documents.
ziqi-jin Jul 19, 2022
8103772
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 19, 2022
f5f7a86
gitignore
ziqi-jin Jul 19, 2022
e6cec25
Transfer some funtions to private member of class
ziqi-jin Jul 19, 2022
e25e4f2
Transfer some funtions to private member of class
ziqi-jin Jul 19, 2022
e8a8439
Merge from develop (#9)
ziqi-jin Jul 20, 2022
a182893
first commit for yolor
ziqi-jin Jul 20, 2022
3aa015f
for merge
ziqi-jin Jul 20, 2022
d6b98aa
Develop (#11)
ziqi-jin Jul 20, 2022
871cfc6
Merge branch 'yolor' into develop
ziqi-jin Jul 20, 2022
013921a
Yolor (#16)
ziqi-jin Jul 21, 2022
7a5a6d9
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 21, 2022
c996117
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 22, 2022
0aefe32
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 26, 2022
2330414
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 26, 2022
4660161
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 27, 2022
033c18e
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 28, 2022
6c94d65
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 28, 2022
85fb256
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Jul 29, 2022
90ca4cb
add is_dynamic for YOLO series (#22)
ziqi-jin Jul 29, 2022
f6a4ed2
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 1, 2022
3682091
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 3, 2022
ca1e110
Merge remote-tracking branch 'upstream/develop' into develop
ziqi-jin Aug 8, 2022
93ba6a6
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 9, 2022
767842e
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 10, 2022
cc32733
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 10, 2022
2771a3b
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 11, 2022
a1e29ac
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 11, 2022
5ecc6fe
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 11, 2022
2780588
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 12, 2022
c00be81
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 15, 2022
9082178
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 15, 2022
4b14f56
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 15, 2022
4876b82
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 16, 2022
9cebb1f
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 18, 2022
d1e3b29
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 19, 2022
69cf0d2
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 22, 2022
2ff10e1
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 23, 2022
a673a2c
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 25, 2022
832d777
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 25, 2022
e513eac
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Aug 29, 2022
ded2054
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 1, 2022
19db925
modify ppmatting backend and docs
ziqi-jin Sep 1, 2022
15be4a6
modify ppmatting docs
ziqi-jin Sep 1, 2022
3a5b93a
fix the PPMatting size problem
ziqi-jin Sep 3, 2022
f765853
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 3, 2022
c2332b0
fix LimitShort's log
ziqi-jin Sep 3, 2022
950f948
retrigger ci
ziqi-jin Sep 4, 2022
64a13c9
modify PPMatting docs
ziqi-jin Sep 4, 2022
09c073d
modify the way for dealing with LimitShort
ziqi-jin Sep 6, 2022
99969b6
Merge branch 'develop' into develop
jiangjiajun Sep 6, 2022
cf248de
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 8, 2022
9d4a4c9
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 13, 2022
622fbf7
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 15, 2022
d1cf1ad
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 19, 2022
ff9a07e
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 21, 2022
2707b03
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Sep 22, 2022
896d1d9
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 8, 2022
25ee7e2
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 12, 2022
79068d3
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 17, 2022
74b3ee0
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 21, 2022
a75c0c4
add python comments for external models
ziqi-jin Oct 21, 2022
985d273
modify resnet c++ comments
ziqi-jin Oct 21, 2022
e32a25c
modify C++ comments for external models
ziqi-jin Oct 21, 2022
8a73af6
modify python comments and add result class comments
ziqi-jin Oct 21, 2022
2aa7939
Merge branch 'develop' into doc_python
jiangjiajun Oct 22, 2022
887c53a
Merge branch 'develop' into doc_python
jiangjiajun Oct 23, 2022
963b9b9
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 24, 2022
337e8c0
fix comments compile error
ziqi-jin Oct 24, 2022
d1d6890
modify result.h comments
ziqi-jin Oct 24, 2022
67234dd
Merge branch 'develop' into doc_python
jiangjiajun Oct 24, 2022
440e2a9
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 24, 2022
ac35141
Merge branch 'doc_python' into develop
ziqi-jin Oct 24, 2022
3d83785
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 24, 2022
363a485
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 25, 2022
dc44eac
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 26, 2022
07717b4
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 26, 2022
33b4c62
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Oct 27, 2022
f911f3b
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Nov 1, 2022
ebb9365
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Nov 2, 2022
0ac31bd
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Nov 7, 2022
661a1ef
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Nov 11, 2022
b7fbc70
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Nov 14, 2022
710e7ea
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Nov 17, 2022
4d2a1e3
Merge branch 'PaddlePaddle:develop' into develop
ziqi-jin Nov 22, 2022
bda089b
modify examples' cpp docs for all models
ziqi-jin Nov 22, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 6 additions & 8 deletions examples/text/ernie-3.0/cpp/README.md
Original file line number Diff line number Diff line change
@@ -12,18 +12,16 @@

### 快速开始

以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的[AFQMC数据集](https://bj.bcebos.com/paddlenlp/datasets/afqmc_public.zip)上进行文本分类任务的C++预测部署。
以下示例展示如何基于FastDeploy库完成ERNIE 3.0 Medium模型在CLUE Benchmark的[AFQMC数据集](https://bj.bcebos.com/paddlenlp/datasets/afqmc_public.zip)上进行文本分类任务的C++预测部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
# 下载SDK,编译模型examples代码(SDK中包含了examples代码)
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz

cd fastdeploy-linux-x64-gpu-0.7.0/examples/text/ernie-3.0/cpp
```bash
mkdir build
cd build
# 执行cmake,需要指定FASTDEPLOY_INSTALL_DIR为FastDeploy SDK的目录。
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../fastdeploy-linux-x64-gpu-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载AFQMC数据集的微调后的ERNIE 3.0模型以及词表
12 changes: 5 additions & 7 deletions examples/text/uie/cpp/README.md
Original file line number Diff line number Diff line change
@@ -8,17 +8,15 @@
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

## 快速开始
以Linux上uie-base模型推理为例,在本目录执行如下命令即可完成编译测试。
以Linux上uie-base模型推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz

cd fastdeploy-linux-x64-gpu-0.7.0/examples/text/uie/cpp
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../fastdeploy-linux-x64-gpu-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载uie-base模型以及词表
11 changes: 5 additions & 6 deletions examples/vision/classification/paddleclas/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,16 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/classification/paddleclas/cpp
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载ResNet50_vd模型文件和测试图片
Original file line number Diff line number Diff line change
@@ -10,14 +10,15 @@
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的inference_cls.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)

## 以量化后的ResNet50_Vd模型为例, 进行部署
## 以量化后的ResNet50_Vd模型为例, 进行部署,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
在本目录执行如下命令即可完成编译,以及量化模型部署.
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载FastDeloy提供的ResNet50_Vd量化模型文件和测试图片
11 changes: 5 additions & 6 deletions examples/vision/classification/resnet/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,16 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试
以Linux上 ResNet50 推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
#下载SDK,编译模型examples代码(SDK中包含了examples代码)
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz
tar xvf fastdeploy-linux-x64-gpu-0.2.1.tgz
cd fastdeploy-linux-x64-gpu-0.2.1/examples/vision/classification/resnet/cpp
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.1
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载ResNet模型文件和测试图片
9 changes: 5 additions & 4 deletions examples/vision/classification/yolov5cls/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,14 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的yolov5模型文件和测试图片
9 changes: 5 additions & 4 deletions examples/vision/detection/nanodet_plus/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,14 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的NanoDetPlus模型文件和测试图片
14 changes: 7 additions & 7 deletions examples/vision/detection/paddledetection/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,17 +7,17 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上推理为例,在本目录执行如下命令即可完成编译测试
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
以ppyoloe为例进行推理部署

#下载SDK,编译模型examples代码(SDK中包含了examples代码)
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/detection/paddledetection/cpp
mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载PPYOLOE模型文件和测试图片
Original file line number Diff line number Diff line change
@@ -11,14 +11,15 @@
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的infer_cfg.yml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)

## 以量化后的PP-YOLOE-l模型为例, 进行部署
## 以量化后的PP-YOLOE-l模型为例, 进行部署。支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
在本目录执行如下命令即可完成编译,以及量化模型部署.
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载FastDeloy提供的ppyoloe_crn_l_300e_coco量化模型文件和测试图片
9 changes: 5 additions & 4 deletions examples/vision/detection/scaledyolov4/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,14 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的ScaledYOLOv4模型文件和测试图片
9 changes: 5 additions & 4 deletions examples/vision/detection/yolor/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,14 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的YOLOR模型文件和测试图片
10 changes: 5 additions & 5 deletions examples/vision/detection/yolov5/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,16 +7,16 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的yolov5模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
9 changes: 5 additions & 4 deletions examples/vision/detection/yolov5/quantize/cpp/README.md
Original file line number Diff line number Diff line change
@@ -12,13 +12,14 @@
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.

## 以量化后的YOLOv5s模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载FastDeloy提供的yolov5s量化模型文件和测试图片
9 changes: 5 additions & 4 deletions examples/vision/detection/yolov5lite/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,14 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的YOLOv5Lite模型文件和测试图片
9 changes: 5 additions & 4 deletions examples/vision/detection/yolov6/cpp/README.md
Original file line number Diff line number Diff line change
@@ -7,14 +7,15 @@
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载官方转换好的YOLOv6模型文件和测试图片
9 changes: 5 additions & 4 deletions examples/vision/detection/yolov6/quantize/cpp/README.md
Original file line number Diff line number Diff line change
@@ -12,13 +12,14 @@
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.

## 以量化后的YOLOv6s模型为例, 进行部署
在本目录执行如下命令即可完成编译,以及量化模型部署.
在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
```bash
mkdir build
cd build
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.7.0.tgz
tar xvf fastdeploy-linux-x64-0.7.0.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.7.0
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载FastDeloy提供的yolov6s量化模型文件和测试图片
Loading