-
Notifications
You must be signed in to change notification settings - Fork 70
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Displayed categories #382
base: master
Are you sure you want to change the base?
Displayed categories #382
Changes from all commits
23ede14
b3dc386
998a571
b64f433
05bd94b
bffc621
5644083
d4aceda
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
{-# OPTIONS --safe --without-K #-} | ||
|
||
open import Categories.Category.Core using (Category) | ||
open import Categories.Category.Displayed using (Displayed) | ||
|
||
module Categories.Category.Construction.Total {o ℓ e o′ ℓ′ e′} {B : Category o ℓ e} (C : Displayed B o′ ℓ′ e′) where | ||
|
||
open import Data.Product using (proj₁; proj₂; Σ-syntax; ∃-syntax; -,_) | ||
open import Level using (_⊔_) | ||
|
||
open import Categories.Functor.Core using (Functor) | ||
|
||
open Category B | ||
open Displayed C | ||
open Equiv′ | ||
|
||
Total : Set (o ⊔ o′) | ||
Total = Σ[ Carrier ∈ Obj ] Obj[ Carrier ] | ||
|
||
record Total⇒ (X Y : Total) : Set (ℓ ⊔ ℓ′) where | ||
constructor total⇒ | ||
field | ||
{arr} : proj₁ X ⇒ proj₁ Y | ||
preserves : proj₂ X ⇒[ arr ] proj₂ Y | ||
|
||
open Total⇒ public using (preserves) | ||
|
||
∫ : Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) | ||
∫ = record | ||
{ Obj = Total | ||
; _⇒_ = Total⇒ | ||
; _≈_ = λ f g → ∃[ p ] preserves f ≈[ p ] preserves g | ||
; id = total⇒ id′ | ||
; _∘_ = λ f g → total⇒ (preserves f ∘′ preserves g) | ||
; assoc = -, assoc′ | ||
; sym-assoc = -, sym-assoc′ | ||
; identityˡ = -, identityˡ′ | ||
; identityʳ = -, identityʳ′ | ||
; identity² = -, identity²′ | ||
; equiv = record | ||
{ refl = -, refl′ | ||
; sym = λ p → -, sym′ (proj₂ p) | ||
; trans = λ p q → -, trans′ (proj₂ p) (proj₂ q) | ||
} | ||
; ∘-resp-≈ = λ p q → -, ∘′-resp-[]≈ (proj₂ p) (proj₂ q) | ||
} | ||
|
||
display : Functor ∫ B | ||
display = record | ||
{ F₀ = proj₁ | ||
; F₁ = Total⇒.arr | ||
; identity = Equiv.refl | ||
; homomorphism = Equiv.refl | ||
; F-resp-≈ = proj₁ | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
{-# OPTIONS --without-K --safe #-} | ||
|
||
open import Categories.Category | ||
|
||
module Categories.Category.Displayed where | ||
|
||
open import Data.Product | ||
open import Level | ||
|
||
open import Categories.Functor.Core | ||
open import Relation.Binary.Displayed | ||
import Relation.Binary.Displayed.Reasoning.Setoid as DisplayedSetoidR | ||
|
||
-- A displayed category captures the idea of placing extra structure | ||
-- over a base category. For example, the category of monoids can be | ||
-- considered as the category of setoids with extra structure on the | ||
-- objects and extra conditions on the morphisms. | ||
record Displayed {o ℓ e} (B : Category o ℓ e) o′ ℓ′ e′ : Set (o ⊔ ℓ ⊔ e ⊔ suc (o′ ⊔ ℓ′ ⊔ e′)) where | ||
open Category B | ||
open Equiv | ||
|
||
infix 4 _⇒[_]_ _≈[_]_ | ||
infixr 9 _∘′_ | ||
|
||
field | ||
Obj[_] : Obj → Set o′ | ||
_⇒[_]_ : ∀ {X Y} → Obj[ X ] → X ⇒ Y → Obj[ Y ] → Set ℓ′ | ||
_≈[_]_ : ∀ {A B X Y} {f g : A ⇒ B} → X ⇒[ f ] Y → f ≈ g → X ⇒[ g ] Y → Set e′ | ||
|
||
id′ : ∀ {A} {X : Obj[ A ]} → X ⇒[ id ] X | ||
_∘′_ : ∀ {A B C X Y Z} {f : B ⇒ C} {g : A ⇒ B} | ||
→ Y ⇒[ f ] Z → X ⇒[ g ] Y → X ⇒[ f ∘ g ] Z | ||
|
||
identityʳ′ : ∀ {A B X Y} {f : A ⇒ B} → {f′ : X ⇒[ f ] Y} → f′ ∘′ id′ ≈[ identityʳ ] f′ | ||
identityˡ′ : ∀ {A B X Y} {f : A ⇒ B} → {f′ : X ⇒[ f ] Y} → id′ ∘′ f′ ≈[ identityˡ ] f′ | ||
identity²′ : ∀ {A} {X : Obj[ A ]} → id′ {X = X} ∘′ id′ ≈[ identity² ] id′ | ||
assoc′ : ∀ {A B C D W X Y Z} {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} | ||
→ {f′ : Y ⇒[ f ] Z} → {g′ : X ⇒[ g ] Y} → {h′ : W ⇒[ h ] X} | ||
→ (f′ ∘′ g′) ∘′ h′ ≈[ assoc ] f′ ∘′ (g′ ∘′ h′) | ||
sym-assoc′ : ∀ {A B C D W X Y Z} {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} | ||
→ {f′ : Y ⇒[ f ] Z} → {g′ : X ⇒[ g ] Y} → {h′ : W ⇒[ h ] X} | ||
→ f′ ∘′ (g′ ∘′ h′) ≈[ sym-assoc ] (f′ ∘′ g′) ∘′ h′ | ||
|
||
|
||
equiv′ : ∀ {A B X Y} → IsDisplayedEquivalence equiv (_≈[_]_ {A} {B} {X} {Y}) | ||
|
||
∘′-resp-≈[] : ∀ {A B C X Y Z} {f h : B ⇒ C} {g i : A ⇒ B} | ||
{f′ : Y ⇒[ f ] Z} {h′ : Y ⇒[ h ] Z} {g′ : X ⇒[ g ] Y} {i′ : X ⇒[ i ] Y} | ||
{p : f ≈ h} {q : g ≈ i} | ||
→ f′ ≈[ p ] h′ → g′ ≈[ q ] i′ → f′ ∘′ g′ ≈[ ∘-resp-≈ p q ] h′ ∘′ i′ | ||
|
||
module Equiv′ {A B X Y} = IsDisplayedEquivalence (equiv′ {A} {B} {X} {Y}) | ||
|
||
open Equiv′ | ||
|
||
∘′-resp-≈[]ˡ : ∀ {A B C X Y Z} {f h : B ⇒ C} {g : A ⇒ B} {f′ : Y ⇒[ f ] Z} {h′ : Y ⇒[ h ] Z} {g′ : X ⇒[ g ] Y} | ||
→ {p : f ≈ h} → f′ ≈[ p ] h′ → f′ ∘′ g′ ≈[ ∘-resp-≈ˡ p ] h′ ∘′ g′ | ||
∘′-resp-≈[]ˡ pf = ∘′-resp-≈[] pf refl′ | ||
|
||
∘′-resp-≈[]ʳ : ∀ {A B C X Y Z} {f : B ⇒ C} {g i : A ⇒ B} {f′ : Y ⇒[ f ] Z} {g′ : X ⇒[ g ] Y} {i′ : X ⇒[ i ] Y} | ||
→ {p : g ≈ i} → g′ ≈[ p ] i′ → f′ ∘′ g′ ≈[ ∘-resp-≈ʳ p ] f′ ∘′ i′ | ||
∘′-resp-≈[]ʳ pf = ∘′-resp-≈[] refl′ pf | ||
|
||
hom-setoid′ : ∀ {A B} {X : Obj[ A ]} {Y : Obj[ B ]} → DisplayedSetoid hom-setoid _ _ | ||
JacquesCarette marked this conversation as resolved.
Show resolved
Hide resolved
|
||
hom-setoid′ {X = X} {Y = Y} = record | ||
{ Carrier′ = X ⇒[_] Y | ||
; _≈[_]_ = _≈[_]_ | ||
; isDisplayedEquivalence = equiv′ | ||
} | ||
|
||
module HomReasoning′ {A B : Obj} {X : Obj[ A ]} {Y : Obj[ B ]} where | ||
open DisplayedSetoidR (hom-setoid′ {X = X} {Y = Y}) public | ||
open HomReasoning | ||
|
||
infixr 4 _⟩∘′⟨_ refl′⟩∘′⟨_ | ||
infixl 5 _⟩∘′⟨refl′ | ||
_⟩∘′⟨_ : ∀ {M} {f h : M ⇒ B} {g i : A ⇒ M} {f≈h : f ≈ h} {g≈i : g ≈ i} | ||
{M′ : Obj[ M ]} {f′ : M′ ⇒[ f ] Y} {h′ : M′ ⇒[ h ] Y} {g′ : X ⇒[ g ] M′} {i′ : X ⇒[ i ] M′} | ||
→ f′ ≈[ f≈h ] h′ → g′ ≈[ g≈i ] i′ → f′ ∘′ g′ ≈[ f≈h ⟩∘⟨ g≈i ] h′ ∘′ i′ | ||
_⟩∘′⟨_ = ∘′-resp-≈[] | ||
|
||
refl′⟩∘′⟨_ : ∀ {M} {f : M ⇒ B} {g i : A ⇒ M} {g≈i : g ≈ i} | ||
{M′ : Obj[ M ]} {f′ : M′ ⇒[ f ] Y} {g′ : X ⇒[ g ] M′} {i′ : X ⇒[ i ] M′} | ||
→ g′ ≈[ g≈i ] i′ → f′ ∘′ g′ ≈[ refl⟩∘⟨ g≈i ] f′ ∘′ i′ | ||
refl′⟩∘′⟨_ = ∘′-resp-≈[]ʳ | ||
|
||
_⟩∘′⟨refl′ : ∀ {M} {f h : M ⇒ B} {g : A ⇒ M} {f≈h : f ≈ h} | ||
{M′ : Obj[ M ]} {f′ : M′ ⇒[ f ] Y} {h′ : M′ ⇒[ h ] Y} {g′ : X ⇒[ g ] M′} | ||
→ f′ ≈[ f≈h ] h′ → f′ ∘′ g′ ≈[ f≈h ⟩∘⟨refl ] h′ ∘′ g′ | ||
_⟩∘′⟨refl′ = ∘′-resp-≈[]ˡ | ||
|
||
op′ : Displayed op o′ ℓ′ e′ | ||
op′ = record | ||
{ Obj[_] = Obj[_] | ||
; _⇒[_]_ = λ X f Y → Y ⇒[ f ] X | ||
; _≈[_]_ = _≈[_]_ | ||
; id′ = id′ | ||
; _∘′_ = λ f′ g′ → g′ ∘′ f′ | ||
; identityʳ′ = identityˡ′ | ||
; identityˡ′ = identityʳ′ | ||
; identity²′ = identity²′ | ||
; assoc′ = sym-assoc′ | ||
; sym-assoc′ = assoc′ | ||
; equiv′ = equiv′ | ||
; ∘′-resp-≈[] = λ p q → ∘′-resp-≈[] q p | ||
} | ||
|
||
module Definitions′ {o ℓ e} {B : Category o ℓ e} {o′ ℓ′ e′} (C : Displayed B o′ ℓ′ e′) where | ||
open Category B | ||
open Displayed C | ||
open Definitions B | ||
|
||
CommutativeSquare′ : ∀ {A B C D : Obj} {A′ : Obj[ A ]} {B′ : Obj[ B ]} {C′ : Obj[ C ]} {D′ : Obj[ D ]} | ||
{f : A ⇒ B} {g : A ⇒ C} {h : B ⇒ D} {i : C ⇒ D} | ||
(f′ : A′ ⇒[ f ] B′) (g′ : A′ ⇒[ g ] C′) (h′ : B′ ⇒[ h ] D′) (i′ : C′ ⇒[ i ] D′) | ||
(sq : CommutativeSquare f g h i) | ||
→ Set _ | ||
CommutativeSquare′ f′ g′ h′ i′ sq = h′ ∘′ f′ ≈[ sq ] i′ ∘′ g′ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
{-# OPTIONS --safe --without-K #-} | ||
|
||
module Categories.Category.Displayed.Instance.DisplayedCats where | ||
|
||
open import Level | ||
|
||
open import Categories.Category | ||
open import Categories.Category.Displayed | ||
open import Categories.Category.Instance.Cats | ||
open import Categories.Functor.Displayed | ||
open import Categories.NaturalTransformation.NaturalIsomorphism.Displayed | ||
|
||
DisplayedCats : ∀ o ℓ e o′ ℓ′ e′ → Displayed (Cats o ℓ e) (o ⊔ ℓ ⊔ e ⊔ suc (o′ ⊔ ℓ′ ⊔ e′)) (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) (o ⊔ ℓ ⊔ o′ ⊔ ℓ′ ⊔ e′) | ||
DisplayedCats o ℓ e o′ ℓ′ e′ = record | ||
{ Obj[_] = λ B → Displayed B o′ ℓ′ e′ | ||
; _⇒[_]_ = λ C F D → DisplayedFunctor C D F | ||
; _≈[_]_ = λ F′ F≃G G′ → DisplayedNaturalIsomorphism F′ G′ F≃G | ||
; id′ = id′ | ||
; _∘′_ = _∘F′_ | ||
; identityˡ′ = unitorˡ′ | ||
; identityʳ′ = unitorʳ′ | ||
; identity²′ = unitor²′ | ||
; assoc′ = λ {_ _ _ _ _ _ _ _ _ _ _ F′ G′ H′} → associator′ H′ G′ F′ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. To revisit later: why do these arguments appear in the wrong order? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If they are via variables, they appear in first-use order, by Agda's definition of "first use", which isn't always easy to predict. |
||
; sym-assoc′ = λ {_ _ _ _ _ _ _ _ _ _ _ F′ G′ H′} → sym-associator′ H′ G′ F′ | ||
; equiv′ = isDisplayedEquivalence | ||
; ∘′-resp-≈[] = _ⓘₕ′_ | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
{-# OPTIONS --safe --without-K #-} | ||
|
||
module Categories.Functor.Displayed where | ||
|
||
open import Function.Base using () renaming (id to id→; _∘_ to _∙_) | ||
open import Level | ||
|
||
open import Categories.Category | ||
open import Categories.Category.Displayed | ||
open import Categories.Functor | ||
|
||
private | ||
variable | ||
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴ : Level | ||
B₁ B₂ B₃ : Category o ℓ e | ||
|
||
record DisplayedFunctor {B₁ : Category o ℓ e} {B₂ : Category o′ ℓ′ e′} (C : Displayed B₁ o″ ℓ″ e″) (D : Displayed B₂ o‴ ℓ‴ e‴) (F : Functor B₁ B₂) : Set (o ⊔ ℓ ⊔ e ⊔ o″ ⊔ ℓ″ ⊔ e″ ⊔ o‴ ⊔ ℓ‴ ⊔ e‴) where | ||
private | ||
module C = Displayed C | ||
module D = Displayed D | ||
module F = Functor F | ||
field | ||
F₀′ : ∀ {X} → C.Obj[ X ] → D.Obj[ F.₀ X ] | ||
F₁′ : ∀ {X Y} {f : B₁ [ X , Y ]} {X′ Y′} → X′ C.⇒[ f ] Y′ → F₀′ X′ D.⇒[ F.₁ f ] F₀′ Y′ | ||
identity′ : ∀ {X} {X′ : C.Obj[ X ]} → F₁′ (C.id′ {X = X′}) D.≈[ F.identity ] D.id′ | ||
homomorphism′ : ∀ {X Y Z} {X′ : C.Obj[ X ]} {Y′ : C.Obj[ Y ]} {Z′ : C.Obj[ Z ]} | ||
{f : B₁ [ X , Y ]} {g : B₁ [ Y , Z ]} {f′ : X′ C.⇒[ f ] Y′} {g′ : Y′ C.⇒[ g ] Z′} | ||
→ F₁′ (g′ C.∘′ f′) D.≈[ F.homomorphism ] F₁′ g′ D.∘′ F₁′ f′ | ||
F′-resp-≈[] : ∀ {X Y} {X′ : C.Obj[ X ]} {Y′ : C.Obj[ Y ]} | ||
{f g : B₁ [ X , Y ]} {f′ : X′ C.⇒[ f ] Y′} {g′ : X′ C.⇒[ g ] Y′} | ||
→ {p : B₁ [ f ≈ g ]} → f′ C.≈[ p ] g′ | ||
→ F₁′ f′ D.≈[ F.F-resp-≈ p ] F₁′ g′ | ||
|
||
₀′ = F₀′ | ||
₁′ = F₁′ | ||
|
||
op′ : DisplayedFunctor C.op′ D.op′ F.op | ||
op′ = record | ||
{ F₀′ = F₀′ | ||
; F₁′ = F₁′ | ||
; identity′ = identity′ | ||
; homomorphism′ = homomorphism′ | ||
; F′-resp-≈[] = F′-resp-≈[] | ||
} | ||
|
||
id′ : ∀ {B : Category o ℓ e} {C : Displayed B o′ ℓ′ e′} → DisplayedFunctor C C id | ||
id′ {C = C} = record | ||
{ F₀′ = id→ | ||
; F₁′ = id→ | ||
; identity′ = Displayed.Equiv′.refl′ C | ||
; homomorphism′ = Displayed.Equiv′.refl′ C | ||
; F′-resp-≈[] = id→ | ||
} | ||
|
||
_∘F′_ : ∀ {C : Displayed B₁ o ℓ e} {D : Displayed B₂ o′ ℓ′ e′} {E : Displayed B₃ o″ ℓ″ e″} | ||
{F : Functor B₂ B₃} {G : Functor B₁ B₂} | ||
→ DisplayedFunctor D E F → DisplayedFunctor C D G → DisplayedFunctor C E (F ∘F G) | ||
JacquesCarette marked this conversation as resolved.
Show resolved
Hide resolved
|
||
_∘F′_ {C = C} {D = D} {E = E} F′ G′ = record | ||
{ F₀′ = F′.₀′ ∙ G′.₀′ | ||
; F₁′ = F′.₁′ ∙ G′.₁′ | ||
; identity′ = begin′ | ||
F′.₁′ (G′.₁′ C.id′) ≈[]⟨ F′.F′-resp-≈[] G′.identity′ ⟩ | ||
F′.₁′ D.id′ ≈[]⟨ F′.identity′ ⟩ | ||
E.id′ ∎′ | ||
; homomorphism′ = λ {_} {_} {_} {_} {_} {_} {_} {_} {f′} {g′} → begin′ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is there a good way to avoid having to write quite this many There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes: use pattern-matching lambda and then name the ones you want. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Or else There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. That is different, it turns out. Sometimes this version isn't always accepted by Agda, I've never quite figured out why / when. |
||
F′.₁′ (G′.₁′ (g′ C.∘′ f′)) ≈[]⟨ F′.F′-resp-≈[] G′.homomorphism′ ⟩ | ||
F′.₁′ (G′.₁′ g′ D.∘′ G′.₁′ f′) ≈[]⟨ F′.homomorphism′ ⟩ | ||
(F′.₁′ (G′.₁′ g′) E.∘′ F′.₁′ (G′.₁′ f′)) ∎′ | ||
; F′-resp-≈[] = F′.F′-resp-≈[] ∙ G′.F′-resp-≈[] | ||
} | ||
where | ||
module C = Displayed C | ||
module D = Displayed D | ||
module E = Displayed E | ||
open E.HomReasoning′ | ||
module F′ = DisplayedFunctor F′ | ||
module G′ = DisplayedFunctor G′ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
{-# OPTIONS --safe --without-K #-} | ||
|
||
module Categories.Functor.Displayed.Properties where | ||
|
||
open import Categories.Category | ||
open import Categories.Category.Displayed | ||
open import Categories.Functor | ||
open import Categories.Functor.Displayed | ||
open import Categories.Functor.Properties | ||
open import Categories.Morphism | ||
open import Categories.Morphism.Displayed | ||
|
||
module _ | ||
{o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴} | ||
{C : Category o ℓ e} {D : Category o′ ℓ′ e′} {F : Functor C D} | ||
{C′ : Displayed C o″ ℓ″ e″} {D′ : Displayed D o‴ ℓ‴ e‴} (F′ : DisplayedFunctor C′ D′ F) | ||
where | ||
|
||
private | ||
module C = Category C | ||
-- module F = Functor F | ||
module C′ = Displayed C′ | ||
module D′ = Displayed D′ | ||
module F′ = DisplayedFunctor F′ | ||
|
||
open Definitions | ||
open Definitions′ | ||
|
||
[_]-resp-∘′ : ∀ {X Y Z} {f : Y C.⇒ Z} {g : X C.⇒ Y} {h : X C.⇒ Z} {f∘g≈h : f C.∘ g C.≈ h} | ||
{X′ : C′.Obj[ X ]} {Y′ : C′.Obj[ Y ]} {Z′ : C′.Obj[ Z ]} | ||
{f′ : Y′ C′.⇒[ f ] Z′} {g′ : X′ C′.⇒[ g ] Y′} {h′ : X′ C′.⇒[ h ] Z′} | ||
→ f′ C′.∘′ g′ C′.≈[ f∘g≈h ] h′ | ||
→ F′.₁′ f′ D′.∘′ F′.₁′ g′ D′.≈[ [ F ]-resp-∘ f∘g≈h ] F′.₁′ h′ | ||
[_]-resp-∘′ {f′ = f′} {g′ = g′} {h′ = h′} eq = begin′ | ||
F′.₁′ f′ D′.∘′ F′.₁′ g′ ≈˘[]⟨ F′.homomorphism′ ⟩ | ||
F′.₁′ (f′ C′.∘′ g′) ≈[]⟨ F′.F′-resp-≈[] eq ⟩ | ||
F′.₁′ h′ ∎′ | ||
where open D′.HomReasoning′ | ||
|
||
[_]-resp-square′ : ∀ {W X Y Z} {f : W C.⇒ X} {g : W C.⇒ Y} {h : X C.⇒ Z} {i : Y C.⇒ Z} {sq : CommutativeSquare C f g h i} | ||
{W′ : C′.Obj[ W ]} {X′ : C′.Obj[ X ]} {Y′ : C′.Obj[ Y ]} {Z′ : C′.Obj[ Z ]} | ||
{f′ : W′ C′.⇒[ f ] X′} {g′ : W′ C′.⇒[ g ] Y′} {h′ : X′ C′.⇒[ h ] Z′} {i′ : Y′ C′.⇒[ i ] Z′} | ||
→ CommutativeSquare′ C′ f′ g′ h′ i′ sq | ||
→ CommutativeSquare′ D′ (F′.₁′ f′) (F′.₁′ g′) (F′.₁′ h′) (F′.₁′ i′) ([ F ]-resp-square sq) | ||
[_]-resp-square′ {f′ = f′} {g′ = g′} {h′ = h′} {i′ = i′} sq′ = begin′ | ||
F′.₁′ h′ D′.∘′ F′.₁′ f′ ≈˘[]⟨ F′.homomorphism′ ⟩ | ||
F′.₁′ (h′ C′.∘′ f′) ≈[]⟨ F′.F′-resp-≈[] sq′ ⟩ | ||
F′.₁′ (i′ C′.∘′ g′) ≈[]⟨ F′.homomorphism′ ⟩ | ||
F′.₁′ i′ D′.∘′ F′.₁′ g′ ∎′ | ||
where open D′.HomReasoning′ | ||
|
||
[_]-resp-DisplayedIso : ∀ {X Y} {f : X C.⇒ Y} {g : Y C.⇒ X} {iso : Iso C f g} | ||
{X′ : C′.Obj[ X ]} {Y′ : C′.Obj[ Y ]} {f′ : X′ C′.⇒[ f ] Y′} {g′ : Y′ C′.⇒[ g ] X′} | ||
→ DisplayedIso C′ f′ g′ iso → DisplayedIso D′ (F′.₁′ f′) (F′.₁′ g′) ([ F ]-resp-Iso iso) | ||
[_]-resp-DisplayedIso {f′ = f′} {g′ = g′} diso = record | ||
{ isoˡ′ = begin′ | ||
F′.₁′ g′ D′.∘′ F′.₁′ f′ ≈[]⟨ [ isoˡ′ ]-resp-∘′ ⟩ | ||
F′.₁′ C′.id′ ≈[]⟨ F′.identity′ ⟩ | ||
D′.id′ ∎′ | ||
; isoʳ′ = begin′ | ||
F′.₁′ f′ D′.∘′ F′.₁′ g′ ≈[]⟨ [ isoʳ′ ]-resp-∘′ ⟩ | ||
F′.₁′ C′.id′ ≈[]⟨ F′.identity′ ⟩ | ||
D′.id′ ∎′ | ||
} | ||
where | ||
open DisplayedIso diso | ||
open D′.HomReasoning′ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
{-# OPTIONS --safe --without-K #-} | ||
|
||
open import Categories.Category | ||
open import Categories.Category.Displayed | ||
|
||
module Categories.Morphism.Displayed {o ℓ e o′ ℓ′ e′} {B : Category o ℓ e} (C : Displayed B o′ ℓ′ e′) where | ||
|
||
open import Categories.Morphism B | ||
|
||
open Category B | ||
open Displayed C | ||
|
||
private | ||
variable | ||
X Y : Obj | ||
X′ : Obj[ X ] | ||
Y′ : Obj[ Y ] | ||
|
||
record DisplayedIso {from : X ⇒ Y} {to : Y ⇒ X} (from′ : X′ ⇒[ from ] Y′) (to′ : Y′ ⇒[ to ] X′) (iso : Iso from to) : Set e′ where | ||
open Iso iso | ||
field | ||
isoˡ′ : to′ ∘′ from′ ≈[ isoˡ ] id′ | ||
isoʳ′ : from′ ∘′ to′ ≈[ isoʳ ] id′ |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Tempting to call this
proj1
, no?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm not a huge fan of the name
proj1
for this, personally. It feels like naming the functor after an implementation detail. That said, I'm not set ondisplay
either.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Part of my doodling is exploring how much
Displayed
is really the categorical equivalent of aSigma
type. So it's much more than an implementation detail, there is a very strong analogy at play.I'm sure there are other, better names (certainly than
proj1
). I'm not set againstdisplay
, BTW, but I do think it's worth thinking about.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This functor is normally called
π
in the literature, soproj1
is a fitting name.