Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move raw bundles from Data.X.Properties to Data.X.Base #1810

Merged
merged 6 commits into from
Oct 6, 2022
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,32 @@ Non-backwards compatible changes
(highly specific) mode of use. Correspondingly, modules grouped under `*.Categorical.*`
which exploited these structures for effectful programming have been renamed `*.Effectful`.

#### Moved raw bundles from Data.X.Properties to Data.X.Base

* As mentioned by MatthewDaggitt in Issue #1755, Raw bundles defined in Data.X.Properties
should be defined in Data.X.Base as they don't require any properties.
* Moved raw bundles From `Data.Nat.Properties` to `Data.Nat.Base`
* Moved raw bundles From `Data.Nat.Binary.Properties` to `Data.Nat.Binary.Base`
* Moved raw bundles From `Data.Rational.Properties` to `Data.Rational.Base`
* Moved raw bundles From `Data.Rational.Unnormalised.Properties` to `Data.Rational.Unnormalised.Base`

#### Moved the definition of RawX from `Algebra.X.Bundles` to `Algebra.X.Bundles.Raw`

* A new module `Algebra.Bundles.Raw` containing the definitions of the raw bundles
can be imported at much lower cost from `Data.X.Base`.
The following definitions have been moved:
* `RawMagma`
* `RawMonoid`
* `RawGroup`
* `RawNearSemiring`
* `RawSemiring`
* `RawRingWithoutOne`
* `RawRing`
* `RawQuasigroup`
* `RawLoop`
* A new module `Algebra.Lattice.Bundles.Raw` is also introduced.
* `RawLattice` has been moved from `Algebra.Lattice.Bundles` to this new module.

### Improvements to pretty printing and regexes

* In `Text.Pretty`, `Doc` is now a record rather than a type alias. This
Expand Down
244 changes: 1 addition & 243 deletions src/Algebra/Bundles.agda
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

module Algebra.Bundles where

open import Algebra.Bundles.Raw public
open import Algebra.Core
open import Algebra.Structures
open import Relation.Binary
Expand All @@ -22,19 +23,6 @@ open import Level
-- Bundles with 1 binary operation
------------------------------------------------------------------------

record RawMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier

infix 4 _≉_
_≉_ : Rel Carrier _
x ≉ y = N.¬ (x ≈ y)


record Magma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
Expand Down Expand Up @@ -232,27 +220,6 @@ record CommutativeSemigroup c ℓ : Set (suc (c ⊔ ℓ)) where
-- Bundles with 1 binary operation & 1 element
------------------------------------------------------------------------

-- A raw monoid is a monoid without any laws.

record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier

rawMagma : RawMagma c ℓ
rawMagma = record
{ _≈_ = _≈_
; _∙_ = _∙_
}

open RawMagma rawMagma public
using (_≉_)


record UnitalMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
Expand Down Expand Up @@ -359,28 +326,6 @@ module BoundedLattice {c ℓ} (idemCommMonoid : IdempotentCommutativeMonoid c
-- Bundles with 1 binary operation, 1 unary operation & 1 element
------------------------------------------------------------------------

record RawGroup c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
_⁻¹ : Op₁ Carrier

rawMonoid : RawMonoid c ℓ
rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _∙_
; ε = ε
}

open RawMonoid rawMonoid public
using (_≉_; rawMagma)


record InvertibleMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 _⁻¹
infixl 7 _∙_
Expand Down Expand Up @@ -487,34 +432,6 @@ record AbelianGroup c ℓ : Set (suc (c ⊔ ℓ)) where
-- Bundles with 2 binary operations & 1 element
------------------------------------------------------------------------

record RawNearSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier

+-rawMonoid : RawMonoid c ℓ
+-rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _+_
; ε = 0#
}

open RawMonoid +-rawMonoid public
using (_≉_) renaming (rawMagma to +-rawMagma)

*-rawMagma : RawMagma c ℓ
*-rawMagma = record
{ _≈_ = _≈_
; _∙_ = _*_
}


record NearSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
Expand Down Expand Up @@ -626,37 +543,6 @@ record CommutativeSemiringWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where
-- Bundles with 2 binary operations & 2 elements
------------------------------------------------------------------------

record RawSemiring c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
0# : Carrier
1# : Carrier

rawNearSemiring : RawNearSemiring c ℓ
rawNearSemiring = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
}

open RawNearSemiring rawNearSemiring public
using (_≉_; +-rawMonoid; +-rawMagma; *-rawMagma)

*-rawMonoid : RawMonoid c ℓ
*-rawMonoid = record
{ _≈_ = _≈_
; _∙_ = _*_
; ε = 1#
}


record SemiringWithoutAnnihilatingZero c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _*_
infixl 6 _+_
Expand Down Expand Up @@ -939,37 +825,6 @@ record Quasiring c ℓ : Set (suc (c ⊔ ℓ)) where
-- Bundles with 2 binary operations, 1 unary operation & 1 element
------------------------------------------------------------------------

record RawRingWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier

+-rawGroup : RawGroup c ℓ
+-rawGroup = record
{ _≈_ = _≈_
; _∙_ = _+_
; ε = 0#
; _⁻¹ = -_
}

open RawGroup +-rawGroup public
using (_≉_) renaming (rawMagma to +-rawMagma; rawMonoid to +-rawMonoid)

*-rawMagma : RawMagma c ℓ
*-rawMagma = record
{ _≈_ = _≈_
; _∙_ = _*_
}


record RingWithoutOne c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
Expand Down Expand Up @@ -1053,46 +908,6 @@ record Nearring c ℓ : Set (suc (c ⊔ ℓ)) where
;*-rawMagma; *-magma; *-semigroup; *-monoid
)

-- A raw ring is a ring without any laws.

record RawRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier

rawSemiring : RawSemiring c ℓ
rawSemiring = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; 0# = 0#
; 1# = 1#
}

open RawSemiring rawSemiring public
using
( _≉_
; +-rawMagma; +-rawMonoid
; *-rawMagma; *-rawMonoid
)

+-rawGroup : RawGroup c ℓ
+-rawGroup = record
{ _≈_ = _≈_
; _∙_ = _+_
; ε = 0#
; _⁻¹ = -_
}


record Ring c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
Expand Down Expand Up @@ -1184,39 +999,6 @@ record CommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where
-- Bundles with 3 binary operations
------------------------------------------------------------------------

record RawQuasigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infixl 7 _\\_
infixl 7 _//_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier

∙-rawMagma : RawMagma c ℓ
∙-rawMagma = record
{ _≈_ = _≈_
; _∙_ = _∙_
}

\\-rawMagma : RawMagma c ℓ
\\-rawMagma = record
{ _≈_ = _≈_
; _∙_ = _\\_
}

//-rawMagma : RawMagma c ℓ
//-rawMagma = record
{ _≈_ = _≈_
; _∙_ = _//_
}

open RawMagma \\-rawMagma public
using (_≉_)

record Quasigroup c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infixl 7 _\\_
Expand Down Expand Up @@ -1249,30 +1031,6 @@ record Quasigroup c ℓ : Set (suc (c ⊔ ℓ)) where
open RawQuasigroup rawQuasigroup public
using (//-rawMagma; \\-rawMagma; ∙-rawMagma)

record RawLoop c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infixl 7 _\\_
infixl 7 _//_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier

rawQuasigroup : RawQuasigroup c ℓ
rawQuasigroup = record
{ _≈_ = _≈_
; _∙_ = _∙_
; _\\_ = _\\_
; _//_ = _//_
}

open RawQuasigroup rawQuasigroup public
using (_≉_ ; ∙-rawMagma; \\-rawMagma; //-rawMagma)

record Loop c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infixl 7 _\\_
Expand Down
Loading