Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a couple lemmas about product in Data.List.Properties #2460

Merged
merged 8 commits into from
Aug 22, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 13 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,12 @@ New modules
Additions to existing modules
-----------------------------

* In `Data.List.Properties`:
```agda
product≢0 : All NonZero ns → NonZero (product ns)
∈⇒≤product : All NonZero ns → n ∈ ns → n ≤ product ns
```

* In `Data.List.Relation.Unary.All`:
```agda
search : Decidable P → ∀ xs → All (∁ P) xs ⊎ Any P xs
Expand All @@ -65,7 +71,13 @@ Additions to existing modules
++⁺ˡ : Reflexive R → ∀ zs → (_++ zs) Preserves (Pointwise R) ⟶ (Pointwise R)
```

* New lemmas in `Data.Nat.Properties`: adjunction between `suc` and `pred`
* New lemmas in `Data.Nat.Properties`:
```agda
m≤n⇒m≤n*o : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ n * o
m≤n⇒m≤o*n : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ o * n
```

adjunction between `suc` and `pred`
```agda
suc[m]≤n⇒m≤pred[n] : suc m ≤ n → m ≤ pred n
m≤pred[n]⇒suc[m]≤n : .{{NonZero n}} → m ≤ pred n → suc m ≤ n
Expand Down
16 changes: 16 additions & 0 deletions src/Data/List/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -842,6 +842,22 @@ sum-++ (x ∷ xs) ys = begin
∈⇒∣product {n} {n ∷ ns} (here refl) = divides (product ns) (*-comm n (product ns))
∈⇒∣product {n} {m ∷ ns} (there n∈ns) = ∣n⇒∣m*n m (∈⇒∣product n∈ns)

product≢0 : ∀ {ns} → All NonZero ns → NonZero (product ns)
product≢0 [] = _
product≢0 {n ∷ ns} (nzn ∷ nzns) = m*n≢0 n (product ns)
where instance
_ = nzn
_ = product≢0 nzns

∈⇒≤product : ∀ {n ns} → All NonZero ns → n ∈ ns → n ≤ product ns
∈⇒≤product {ns = n ∷ ns} (_ ∷ nzns) (here refl) =
m≤m*n n (product ns)
where instance _ = product≢0 nzns
∈⇒≤product {ns = n ∷ _} (nz ∷ nzns) (there n∈ns) =
m≤n⇒m≤o*n n (∈⇒≤product nzns n∈ns)
where instance _ = nz


------------------------------------------------------------------------
-- applyUpTo

Expand Down
5 changes: 1 addition & 4 deletions src/Data/Nat/Primality.agda
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
module Data.Nat.Primality where

open import Data.List.Base using ([]; _∷_; product)
open import Data.List.Properties using (product≢0)
open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
open import Data.Nat.Base
open import Data.Nat.Divisibility
Expand Down Expand Up @@ -324,10 +325,6 @@ prime⇒¬composite (prime p) = p

productOfPrimes≢0 : ∀ {as} → All Prime as → NonZero (product as)
productOfPrimes≢0 pas = product≢0 (All.map prime⇒nonZero pas)
where
product≢0 : ∀ {ns} → All NonZero ns → NonZero (product ns)
product≢0 [] = _
product≢0 {n ∷ ns} (nzn ∷ nzns) = m*n≢0 n _ {{nzn}} {{product≢0 nzns}}

productOfPrimes≥1 : ∀ {as} → All Prime as → product as ≥ 1
productOfPrimes≥1 {as} pas = >-nonZero⁻¹ _ {{productOfPrimes≢0 pas}}
Expand Down
13 changes: 8 additions & 5 deletions src/Data/Nat/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -1000,6 +1000,12 @@ m≤n*m m n@(suc _) = begin
m * n ≡⟨ *-comm m n ⟩
n * m ∎

m≤n⇒m≤o*n : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ o * n
m≤n⇒m≤o*n o m≤n = ≤-trans m≤n (m≤n*m _ o)

m≤n⇒m≤n*o : ∀ o .{{_ : NonZero o}} → m ≤ n → m ≤ n * o
m≤n⇒m≤n*o o m≤n = ≤-trans m≤n (m≤m*n _ o)

m<m*n : ∀ m n .{{_ : NonZero m}} → 1 < n → m < m * n
m<m*n m@(suc m-1) n@(suc (suc n-2)) (s≤s (s≤s _)) = begin-strict
m <⟨ s≤s (s≤s (m≤n+m m-1 n-2)) ⟩
Expand All @@ -1008,13 +1014,10 @@ m<m*n m@(suc m-1) n@(suc (suc n-2)) (s≤s (s≤s _)) = begin-strict
m * n ∎

m<n⇒m<n*o : ∀ o .{{_ : NonZero o}} → m < n → m < n * o
m<n⇒m<n*o {n = n} o m<n = <-≤-trans m<n (m≤m*n n o)
m<n⇒m<n*o = m≤n⇒m≤n*o

m<n⇒m<o*n : ∀ {m n} o .{{_ : NonZero o}} → m < n → m < o * n
m<n⇒m<o*n {m} {n} o m<n = begin-strict
m <⟨ m<n⇒m<n*o o m<n ⟩
n * o ≡⟨ *-comm n o ⟩
o * n ∎
m<n⇒m<o*n = m≤n⇒m≤o*n

*-cancelʳ-< : RightCancellative _<_ _*_
*-cancelʳ-< zero zero (suc o) _ = 0<1+n
Expand Down