Skip to content

fastmachinelearning/cloud-segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Package description

This folder contains example training scripts of AGENIUM SPACE tiny unet model on ALCD Cloud DB. It contains training script, the ALCD DB reprocessed in RGB a docker recipe.

Docker

The folder contains a docker recipe and a make file to build an run it, got check the Readme in DOCKER folder. It is assumed you have a NVIDIA GPU on your computer. To build the docker:

cd DOCKER
make build

To run the docker :

cd DOCKER
make bash

Database

You can find the DB in DATA. It is a tiled and rgb format of the ALCD Cloud DB available online here.

Trained Models

This section assume you are using the provided docker.

For training the tiny unet 100k model use :

    python ./SCRIPTS/train.py run --model ags_tiny_unet_100k --data_path ./DATA/

For training the tiny unet 50k model use :

    python ./SCRIPTS/train.py run --model ags_tiny_unet_50k --data_path ./DATA/

You can access the help info using

    python ./SCRIPTS/train.py run -- --help

To use 2 gpus:

# using torchrun
torchrun --nproc_per_node=2 ./SCRIPTS/train.py run --model ags_tiny_unet_100k --data_path ./DATA/ --backend="nccl"

python ./SCRIPTS/train.py run --model ags_tiny_unet_50k --data_path ./DATA/

Models Score

The table below contains the score results for the the models

Model Train Score (mean F1-score) Valid Score (F1-score)
tiny_unet_50k 0.94 - 0.78 0.94 - 0.77
tiny_unet_100k 0.94 - 0.79 0.84 - 0.78

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published