This package contains the LangChain integration with Memgraph graph database.
pip install -U langchain-memgraph
The Memgraph
class is a wrapper around the database client that supports the
query operation.
import os
from langchain_memgraph.graphs.memgraph import Memgraph
url = os.getenv("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USERNAME", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
graph = Memgraph(url=url, username=username, password=password, refresh_schema=False)
results = graph.query("MATCH (n) RETURN n LIMIT 1")
print(results)
The MemgraphQAChain
class enables natural language interactions with a Memgraph database.
It uses an LLM and the database's schema to translate a user's question into a Cypher query, which is executed against the database.
The resulting data is then sent along with the user's question to the LLM to generate a natural language response.
import os
from langchain_memgraph.graphs.memgraph import Memgraph
from langchain_memgraph.chains.graph_qa import MemgraphQAChain
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USERNAME", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
graph = Memgraph(url=url, username=username, password=password, refresh_schema=False)
chain = MemgraphQAChain.from_llm(
ChatOpenAI(temperature=0),
graph=graph,
model_name="gpt-4-turbo",
allow_dangerous_requests=True,
)
response = chain.invoke("Is there a any Person node in the dataset?")
result = response["result"].lower()
print(result)
The MemgraphToolkit
contains different tools agents can leverage to perform specific tasks the user has given them. Toolkit
needs a database object and LLM access since different tools leverage different operations.
Currently supported tools:
- QueryMemgraphTool - Basic Cypher query execution tool
import os
import pytest
from dotenv import load_dotenv
from langchain.chat_models import init_chat_model
from langchain_memgraph import MemgraphToolkit
from langchain_memgraph.graphs.memgraph import Memgraph
from langgraph.prebuilt import create_react_agent
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY", "")
url = os.getenv("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.getenv("MEMGRAPH_USERNAME", "")
password = os.getenv("MEMGRAPH_PASSWORD", "")
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
db = Memgraph(url=url, username=username, password=password)
toolkit = MemgraphToolkit(db=db, llm=llm)
agent_executor = create_react_agent(
llm, toolkit.get_tools(), prompt="You will get a cypher query, try to execute it on the Memgraph database."
)
example_query = "MATCH (n) WHERE n.name = 'Jon Snow' RETURN n"
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
last_event = None
for event in events:
last_event = event
event["messages"][-1].pretty_print()
print(last_event)
Install the test dependencies to run the tests:
- Install dependencies
poetry install --with test,test_integration
-
Start Memgraph in the background.
-
Create an
.env
file that points to Memgraph and OpenAI API
MEMGRAPH_URI=bolt://localhost:7687
MEMGRAPH_USERNAME=
MEMGRAPH_PASSWORD=
OPENAI_API_KEY=your_openai_api_key
Run the unit tests using:
make tests
Run the integration test using:
make integration_tests
Install the codespell
, lint
, and typing dependencies to lint and format your code:
poetry install --with codespell,lint,typing
To format your code, run:
make format
To lint it, run:
make lint