Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FIX: Add FSL-LTA-FSL regression tests #146

Merged
merged 1 commit into from
Feb 16, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
0.99971074 -0.00958054 -0.02206109 33.80017471
-0.02333562 -0.60849756 -0.79321212 240.58090210
-0.00582473 0.79349738 -0.60854524 70.82102203
0.00000000 0.00000000 0.00000000 1.00000012
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
1.00000024 -0.00016984 0.00015428 49.00255203
0.00015430 0.00009513 -1.00000024 255.96905518
0.00016983 1.00000024 0.00009516 -0.01236603
0.00000000 0.00000000 0.00000000 1.00000012
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
1.00000012 0.00015430 0.00016983 -49.04202271
-0.00016984 0.00009513 1.00000012 -0.00367374
0.00015428 -1.00000012 0.00009516 255.96148682
0.00000000 0.00000000 0.00000000 1.00000012
84 changes: 73 additions & 11 deletions nitransforms/tests/test_conversions.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,22 @@
from ..io.lta import FSLinearTransformArray as LTA


def test_concatenation(data_path):
"""Check replacement to lta_concat."""
lta0 = _l.load(
data_path / "regressions" / "from-scanner_to-fsnative_mode-image.lta", fmt="lta"
)
lta1 = _l.load(
data_path / "regressions" / "from-fsnative_to-bold_mode-image.lta", fmt="lta"
)

lta_combined = _l.load(
data_path / "regressions" / "from-scanner_to-bold_mode-image.lta", fmt="lta"
)

assert np.allclose(lta1.matrix.dot(lta0.matrix), lta_combined.matrix)


@pytest.mark.parametrize(
"filename",
[
Expand All @@ -18,8 +34,8 @@
)
def test_lta2itk_conversions(data_path, filename):
"""Check conversions between formats."""
lta = _l.load(data_path / "regressions" / ".".join((filename, "lta")), fmt="lta")
itk = _l.load(data_path / "regressions" / ".".join((filename, "tfm")), fmt="itk")
lta = _l.load(data_path / "regressions" / f"{filename}.lta", fmt="lta")
itk = _l.load(data_path / "regressions" / f"{filename}.tfm", fmt="itk")
assert np.allclose(lta.matrix, itk.matrix)


Expand Down Expand Up @@ -59,17 +75,63 @@ def test_itk2lta_conversions(
assert np.allclose(converted_lta["xforms"][0]["m_L"], exp_lta["xforms"][0]["m_L"])


def test_concatenation(data_path):
"""Check replacement to lta_concat."""
lta0 = _l.load(
data_path / "regressions" / "from-scanner_to-fsnative_mode-image.lta", fmt="lta"
@pytest.mark.parametrize(
"fromto",
[
("fsnative", "bold"),
("fsnative", "scanner"),
("scanner", "bold"),
("scanner", "fsnative"),
],
)
def test_lta2fsl_conversions(data_path, fromto, testdata_path):
"""Check conversions between formats."""
filename = f"from-{fromto[0]}_to-{fromto[1]}_mode-image"
movname = "bold.nii.gz" if fromto[1] == "bold" else f"T1w_{fromto[1]}.nii.gz"

lta = _l.load(data_path / "regressions" / f"{filename}.lta", fmt="lta")
fsl = _l.load(
data_path / "regressions" / f"{filename}.fsl",
moving=testdata_path / movname,
reference=testdata_path / f"T1w_{fromto[0]}.nii.gz",
fmt="fsl",
)
lta1 = _l.load(
data_path / "regressions" / "from-fsnative_to-bold_mode-image.lta", fmt="lta"
assert np.allclose(lta.matrix, fsl.matrix, atol=1e-4)


@pytest.mark.parametrize(
"fromto",
[
("fsnative", "bold"),
("fsnative", "scanner"),
("scanner", "bold"),
("scanner", "fsnative"),
],
)
def test_fsl2lta_conversions(
data_path, testdata_path, tmp_path, fromto,
):
"""Check conversions between formats."""
filename = f"from-{fromto[0]}_to-{fromto[1]}_mode-image"
refname = "bold.nii.gz" if fromto[1] == "bold" else f"T1w_{fromto[1]}.nii.gz"

fsl = _l.load(
data_path / "regressions" / f"{filename}.fsl",
reference=testdata_path / f"T1w_{fromto[0]}.nii.gz",
moving=testdata_path / refname,
fmt="fsl"
)
fsl.to_filename(
tmp_path / "test.lta",
fmt="fs",
)

lta_combined = _l.load(
data_path / "regressions" / "from-scanner_to-bold_mode-image.lta", fmt="lta"
converted_lta = LTA.from_filename(tmp_path / "test.lta")
expected_fname = (
data_path / "regressions" / "".join((filename, "_type-ras2ras.lta"))
)
if not expected_fname.exists():
expected_fname = data_path / "regressions" / "".join((filename, ".lta"))

assert np.allclose(lta1.matrix.dot(lta0.matrix), lta_combined.matrix)
exp_lta = LTA.from_filename(expected_fname)
assert np.allclose(converted_lta["xforms"][0]["m_L"], exp_lta["xforms"][0]["m_L"], atol=1e-4)