conceptnet-numberbatch-17-06-300
·
10 commits
to master
since this release
ConceptNet Numberbatch consists of state-of-the-art semantic vectors (also known as word embeddings) that can be used directly as a representation of word meanings or as a starting point for further machine learning.
Related issue #9.
attribute | value |
---|---|
File size | 1.14GB |
Number of vectors | 1917247 |
Dimension | 300 |
License | https://github.com/commonsense/conceptnet-numberbatch/blob/master/LICENSE.txt |
Read more:
- http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
- https://github.com/commonsense/conceptnet-numberbatch
- http://conceptnet.io/
Example
import gensim.downloader as api
model = api.load("conceptnet-numberbatch-17-06-300")
for word, distance in model.most_similar("/c/en/beer"):
print(u"{}: {:4f}".format(word, distance))
"""
output:
/c/ca/birra: 0.995633
/c/eu/zerbeza: 0.995058
/c/hi/बियर: 0.994754
/c/ja/ビア: 0.994656
/c/ja/ビヤ: 0.994406
/c/ja/ビーア: 0.994406
/c/eu/garagardo: 0.994178
/c/ku/بیرە: 0.993689
/c/eu/biera: 0.993634
/c/sh/пиво: 0.992218
"""