Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NeighborLoader: Optionally use argument data without to_csc #4620

Merged
merged 5 commits into from
May 11, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

## [2.0.5] - 2022-MM-DD
### Added
- Added faster initialization of `NeighborLoader` in case edge indices are already sorted (via `is_sorted=True`) ([#4620](https://github.com/pyg-team/pytorch_geometric/pull/4620))
- Added `AddPositionalEncoding` transform ([#4521](https://github.com/pyg-team/pytorch_geometric/pull/4521))
- Added `HeteroData.is_undirected()` support ([#4604](https://github.com/pyg-team/pytorch_geometric/pull/4604))
- Added the `Genius` and `Wiki` datasets to `nn.datasets.LINKXDataset` ([#4570](https://github.com/pyg-team/pytorch_geometric/pull/4570), [#4600](https://github.com/pyg-team/pytorch_geometric/pull/4600))
Expand Down
1 change: 1 addition & 0 deletions torch_geometric/data/lightning_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,7 @@ def __init__(
directed=kwargs.get('directed', True),
input_type=get_input_nodes(data, input_train_nodes)[0],
time_attr=kwargs.get('time_attr', None),
is_sorted=kwargs.get('is_sorted', False),
)
self.input_train_nodes = input_train_nodes
self.input_val_nodes = input_val_nodes
Expand Down
23 changes: 17 additions & 6 deletions torch_geometric/loader/link_neighbor_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,9 +201,6 @@ class LinkNeighborLoader(torch.utils.data.DataLoader):
replacement. (default: :obj:`False`)
directed (bool, optional): If set to :obj:`False`, will include all
edges between all sampled nodes. (default: :obj:`True`)
transform (Callable, optional): A function/transform that takes in
a sampled mini-batch and returns a transformed version.
(default: :obj:`None`)
neg_sampling_ratio (float, optional): The ratio of sampled negative
edges to the number of positive edges.
If :obj:`edge_label` does not exist, it will be automatically
Expand All @@ -219,6 +216,13 @@ class LinkNeighborLoader(torch.utils.data.DataLoader):
:meth:`F.binary_cross_entropy`) and of type
:obj:`torch.long` for multi-class classification (to facilitate the
ease-of-use of :meth:`F.cross_entropy`). (default: :obj:`0.0`).
transform (Callable, optional): A function/transform that takes in
a sampled mini-batch and returns a transformed version.
(default: :obj:`None`)
is_sorted (bool, optional): If set to :obj:`True`, assumes that
:obj:`edge_index` is sorted by column. This avoids internal
re-sorting of the data and can improve runtime and memory
efficiency. (default: :obj:`False`)
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
Expand All @@ -231,9 +235,10 @@ def __init__(
edge_label: OptTensor = None,
replace: bool = False,
directed: bool = True,
neg_sampling_ratio: float = 0.0,
transform: Callable = None,
is_sorted: bool = False,
neighbor_sampler: Optional[LinkNeighborSampler] = None,
neg_sampling_ratio: float = 0.0,
**kwargs,
):
# Remove for PyTorch Lightning:
Expand All @@ -259,9 +264,15 @@ def __init__(

if neighbor_sampler is None:
self.neighbor_sampler = LinkNeighborSampler(
data, num_neighbors, replace, directed, edge_type,
data,
num_neighbors,
replace,
directed,
input_type=edge_type,
is_sorted=is_sorted,
neg_sampling_ratio=self.neg_sampling_ratio,
share_memory=kwargs.get('num_workers', 0) > 0,
neg_sampling_ratio=self.neg_sampling_ratio)
)

super().__init__(Dataset(edge_label_index, edge_label),
collate_fn=self.neighbor_sampler, **kwargs)
Expand Down
24 changes: 19 additions & 5 deletions torch_geometric/loader/neighbor_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,9 @@ def __init__(
replace: bool = False,
directed: bool = True,
input_type: Optional[Any] = None,
share_memory: bool = False,
time_attr: Optional[str] = None,
is_sorted: bool = False,
share_memory: bool = False,
):
self.data_cls = data.__class__
self.num_neighbors = num_neighbors
Expand All @@ -41,7 +42,8 @@ def __init__(
f"'{data.__class__.__name__}' object")

# Convert the graph data into a suitable format for sampling.
out = to_csc(data, device='cpu', share_memory=share_memory)
out = to_csc(data, device='cpu', share_memory=share_memory,
is_sorted=is_sorted)
self.colptr, self.row, self.perm = out
assert isinstance(num_neighbors, (list, tuple))

Expand All @@ -54,7 +56,8 @@ def __init__(
# Convert the graph data into a suitable format for sampling.
# NOTE: Since C++ cannot take dictionaries with tuples as key as
# input, edge type triplets are converted into single strings.
out = to_hetero_csc(data, device='cpu', share_memory=share_memory)
out = to_hetero_csc(data, device='cpu', share_memory=share_memory,
is_sorted=is_sorted)
self.colptr_dict, self.row_dict, self.perm_dict = out

self.node_types, self.edge_types = data.metadata()
Expand Down Expand Up @@ -245,6 +248,10 @@ class NeighborLoader(torch.utils.data.DataLoader):
transform (Callable, optional): A function/transform that takes in
a sampled mini-batch and returns a transformed version.
(default: :obj:`None`)
is_sorted (bool, optional): If set to :obj:`True`, assumes that
:obj:`edge_index` is sorted by column. This avoids internal
re-sorting of the data and can improve runtime and memory
efficiency. (default: :obj:`False`)
**kwargs (optional): Additional arguments of
:class:`torch.utils.data.DataLoader`, such as :obj:`batch_size`,
:obj:`shuffle`, :obj:`drop_last` or :obj:`num_workers`.
Expand All @@ -258,6 +265,7 @@ def __init__(
directed: bool = True,
time_attr: Optional[str] = None,
transform: Callable = None,
is_sorted: bool = False,
neighbor_sampler: Optional[NeighborSampler] = None,
**kwargs,
):
Expand All @@ -281,9 +289,15 @@ def __init__(

if neighbor_sampler is None:
self.neighbor_sampler = NeighborSampler(
data, num_neighbors, replace, directed, node_type,
data,
num_neighbors,
replace,
directed,
input_type=node_type,
time_attr=time_attr,
share_memory=kwargs.get('num_workers', 0) > 0)
is_sorted=is_sorted,
share_memory=kwargs.get('num_workers', 0) > 0,
)

super().__init__(input_nodes, collate_fn=self.neighbor_sampler,
**kwargs)
Expand Down
13 changes: 8 additions & 5 deletions torch_geometric/loader/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ def to_csc(
data: Union[Data, EdgeStorage],
device: Optional[torch.device] = None,
share_memory: bool = False,
is_sorted: bool = False,
) -> Tuple[Tensor, Tensor, OptTensor]:
# Convert the graph data into a suitable format for sampling (CSC format).
# Returns the `colptr` and `row` indices of the graph, as well as an
Expand All @@ -47,17 +48,18 @@ def to_csc(

elif hasattr(data, 'edge_index'):
(row, col) = data.edge_index
size = data.size()
perm = (col * size[0]).add_(row).argsort()
if not is_sorted:
size = data.size()
perm = (col * size[0]).add_(row).argsort()
row = row[perm]
colptr = torch.ops.torch_sparse.ind2ptr(col[perm], size[1])
row = row[perm]
else:
raise AttributeError("Data object does not contain attributes "
"'adj_t' or 'edge_index'")

colptr = colptr.to(device)
row = row.to(device)
perm = perm if perm is not None else perm.to(device)
perm = perm.to(device) if perm is not None else None

if not colptr.is_cuda and share_memory:
colptr.share_memory_()
Expand All @@ -72,6 +74,7 @@ def to_hetero_csc(
data: HeteroData,
device: Optional[torch.device] = None,
share_memory: bool = False,
is_sorted: bool = False,
) -> Tuple[Dict[str, Tensor], Dict[str, Tensor], Dict[str, OptTensor]]:
# Convert the heterogeneous graph data into a suitable format for sampling
# (CSC format).
Expand All @@ -83,7 +86,7 @@ def to_hetero_csc(

for store in data.edge_stores:
key = edge_type_to_str(store._key)
out = to_csc(store, device, share_memory)
out = to_csc(store, device, share_memory, is_sorted)
colptr_dict[key], row_dict[key], perm_dict[key] = out

return colptr_dict, row_dict, perm_dict
Expand Down