Skip to content

avoid propagation of NaN #8128

avoid propagation of NaN

avoid propagation of NaN #8128

Re-run triggered February 23, 2025 03:08
Status Failure
Total duration 1h 22m 18s
Artifacts 40

fbgemm_gpu_ci_cuda.yml

on: pull_request
Matrix: build_artifact
Matrix: test_and_publish_artifact
Fit to window
Zoom out
Zoom in

Annotations

2 errors

Artifacts

Produced during runtime
Name Size Digest
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu11.8.0.whl
238 MB
sha256:fefdc593a4eefc799e28a67809c4abecca2b9ce7e6f256598b0f78cd88814745
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.4.1.whl
455 MB
sha256:8492562b594ceeea01bec5baddb155c056ddf29d5377a6fe33eb9dd365ca64ee
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.6.3.whl
452 MB
sha256:281a6fe373bc8aa2316eae16c476eebf44c7755864ed6ca46cf51092faad5a27
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.8.0.whl
455 MB
sha256:f256195eca93aec46da426fb3a4180ac19cff2312f3ca51b8de4baf59e3e2331
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu11.8.0.whl
238 MB
sha256:1f36059cb80378a87b49d4ca3803d1859e32b7baf0287905cd97543e777d5979
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.4.1.whl
455 MB
sha256:05fd51f6992a5114b58d7ed58430b3070586dd581e422dfe47374bbc0399d0ba
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.6.3.whl
452 MB
sha256:981001c18ec42279445e01c28dd8719fea10e70756f815e87dce48214a9c2093
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.8.0.whl
455 MB
sha256:efebcba815cd0d5ed3fe316dc246d5f87f635bb3eb39fcbc78dc5d8a725a0ea2
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu11.8.0.whl
238 MB
sha256:6b2f4bb72854c8f35cee422ef625ed93a06b731a9e1cf2ac7f9a043f093a1136
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.4.1.whl
455 MB
sha256:c3b799a6f441c3373d9f3937a15c4cbcfa75fdf3d4c5da728667f7e122faeb14
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.6.3.whl
452 MB
sha256:bd796d4c976469c604225a91016aa4d5e5045ebc4bcebf797aafd604e8449a97
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.8.0.whl
455 MB
sha256:6c7d202afc0105896927cd880e8494b3ad7c2f2fb0708f9fd8cfe160999a0906
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu11.8.0.whl
238 MB
sha256:b9796dc83d8213159575ae513004e431bea673332be815544be1034a272ec116
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.4.1.whl
455 MB
sha256:7a9d2ddff051d38a63f29adb926c968443f06f0ad29383ac9f8a2519019beaca
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.6.3.whl
452 MB
sha256:f5cd765f2c181679890b3d5e795a99d79f552663c7b1e4add97523e5c88400b5
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.8.0.whl
455 MB
sha256:464eab3bb012dcf81634a1fc0cd0f0b37cd816e295d234a25c2a5642daf080f8
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu11.8.0.whl
238 MB
sha256:c40e79824b31277aaa4db6db37ce7382300f4e0f103e5aa62ffe764ab3c0889c
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.4.1.whl
455 MB
sha256:b3bc9089f47be19645b142d221040d6b9135c195381f3130ddaaa6872bae43e3
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.6.3.whl
452 MB
sha256:3fda37ab6aa2f8c834d0f960944d1441949282993d462d962ceac8420272d5d3
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.8.0.whl
455 MB
sha256:581f65863cc4daff45efe5c4322421adeda061e0b51537ba0b93ee78daa772d5
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu11.8.0.whl
235 MB
sha256:1c8d4207fade7590c03ec5efb92bae20b493966b96a838ad61360bcd79c4ddb0
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.4.1.whl
453 MB
sha256:e6c6a8f6a11f66d15f3fd875506062af1e7caa839e4107beca35ba4886ae5170
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.6.3.whl
450 MB
sha256:eb90d1e05982e72703e38d242e0e4abba6e5d973b12629771a8e9d85f7550742
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.8.0.whl
452 MB
sha256:c883eb1a02808806b01021794d14db150077747a0fc1a23149d6570b9b6facc2
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu11.8.0.whl
235 MB
sha256:4f2fc159048dc2c847e69e05489409bdc23c576b3208d54a5719adf580a0d991
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.4.1.whl
453 MB
sha256:bc90f6d62514f50afcd0214c0f35eaec900e184a2b2265bb0b256b079ae54318
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.6.3.whl
450 MB
sha256:494cda0e7c20729312ef5943775a8032656370aad0ff64f0741a7347fbd19dc6
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.8.0.whl
452 MB
sha256:e326f42ac7e8c406eaaec3bc77c6aee776f626c7a51327e1a29138a246b43dd3
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu11.8.0.whl
235 MB
sha256:1c7760bbda6fe7276bf2f9bf2d01eb25fd1aa27008fdf31b7a7c9aa2871dccdc
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.4.1.whl
453 MB
sha256:6d6b7f57c540f3b2da73f94be8fcbd7c28e4ef7a73676ad2c18b8de95c927641
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.6.3.whl
450 MB
sha256:7e19733f3cb665d3974984a4d036045e2aae9d19eb30d0c27728be3837281a6e
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.8.0.whl
452 MB
sha256:0476aa83b389afad8d5ddeb0dcd548c87244994e5884c77357a1da3132b62eb2
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu11.8.0.whl
235 MB
sha256:3c905af8f36f9da85de6c1415e7f677915ce463032818a3c8521b56871b9dd5f
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.4.1.whl
453 MB
sha256:0a5ed6500d1a67af34770c0b64f23af0615dea8bcaaba053f4409a7e6939dcf6
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.6.3.whl
450 MB
sha256:feed854472036b921ac098f5c7ff54aedfd97bb0b7f8db257c8196be84979dd0
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.8.0.whl
452 MB
sha256:613dfa7fd9c993d6b34e3539cceb64756607309f9fb70fbaf26438f2dd0dddb2
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu11.8.0.whl
235 MB
sha256:b295711864439da6090e386e92ae099ec10545ebc1eeda0374606e9656c1015d
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.4.1.whl
453 MB
sha256:e4fe5b44a6e41c1efab66c6fef6532fc72012ca2c4f779f2849356ab6e2fed77
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.6.3.whl
450 MB
sha256:4d8314f29374803086ffb9a1cf1876b2bb3bb6b52ca8910fab71676db61186c4
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.8.0.whl
452 MB
sha256:f2b69d8be55a76f27796f5ed8307117edf43ecaaad7d17b3c2aaacb20e2c2028