Skip to content

Enable rowwise scaling for DeepGemm #8990

Enable rowwise scaling for DeepGemm

Enable rowwise scaling for DeepGemm #8990

Triggered via pull request March 24, 2025 19:09
Status Failure
Total duration 1h 44m 47s
Artifacts 40

fbgemm_gpu_ci_cuda.yml

on: pull_request
Matrix: build_artifact
Matrix: test_and_publish_artifact
Fit to window
Zoom out
Zoom in

Annotations

1 error

Artifacts

Produced during runtime
Name Size Digest
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu11.8.0.whl
263 MB
sha256:eb4b4d0bc82aac6c7c75146fec859dcd323dc7dabbd8164bddb0f2af5ea72160
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.4.1.whl
509 MB
sha256:8637d87cc6a9331c45f8f34f2c00a06aa7a9a0356b8f3c720d75d0c7029172b5
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.6.3.whl
507 MB
sha256:934a8861e166e3c78fcd67e457c12fccee8e33e5d8f776b73bc24fe2a96860d1
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.8.0.whl
967 MB
sha256:8f1b93cc05c281a3bd7333c386d6cacd8cd3d130e8ce4b3f99a59e76b1928e17
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu11.8.0.whl
263 MB
sha256:6c3a07ba56e3dcdbe2e873dfac3c873a59aa68dc8e3b456b2fc2e44ebc684455
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.4.1.whl
509 MB
sha256:17f6bf2e2ad60b5bc341908100a175d7997da9e045568cc115e3d6c251e3426d
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.6.3.whl
507 MB
sha256:9f70b32c4aaf45608dd2e087439d10d75dd39840fbba35e7eeb04a491d0b1e2a
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.8.0.whl
967 MB
sha256:7de0a245971b628ee43e776e9f472de783f0d8171ff78d517c54d12e67e9380f
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu11.8.0.whl
263 MB
sha256:ea3f1c1481a1cd8801043256a3e34ba725561bdf41e5510f871056b22e265ec2
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.4.1.whl
509 MB
sha256:18b5be22f6a35561b8357cb1d3e97ae6215a1b2feaae151ddb1f3dfc3a772371
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.6.3.whl
507 MB
sha256:2764ffbb920ad18fb34511952f5f80547f78371bb8dbfcc9b787a72b001e3e40
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.8.0.whl
967 MB
sha256:ab90fb70ce1821d630c33029cce5ead7e8a5c126479b67871ca7657b18179f3e
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu11.8.0.whl
263 MB
sha256:4af9b1a28304df7eb88b40bcb31f2a5f79273182c9dd228da5a7845f46a4a28a
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.4.1.whl
509 MB
sha256:7b3edb572c355d077d28d370d4581dc2b3537afacba999322eefe47a12478cdd
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.6.3.whl
507 MB
sha256:acf0c2b034bda8f65e6f7d8868636697815c1de3d9591d39c3719c8a7eb49574
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.8.0.whl
967 MB
sha256:c92bde1690cfbd1976c1196e514889f67c53a694486fef89eb24d351dd8e3fb5
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu11.8.0.whl
263 MB
sha256:252097e3d05658a4c62190c9f553f02c5aed54d1d8a36fe97652bb70af9721e6
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.4.1.whl
509 MB
sha256:8d29a92e1312aab5d4aa73df65c23a3e867b45b3a7569108a8460768735e6766
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.6.3.whl
507 MB
sha256:aed54dc346e477b4e184c6f49d6bf077af75eee8cff18cb89578f8023f21176a
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.8.0.whl
967 MB
sha256:b80846e8e9f0804ef35855e6d0f302b54819b4369e3cf3835a732a022f78c952
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu11.8.0.whl
261 MB
sha256:e12082626aba495756604d9fff8d36608545d965b6fecf44c046de0d0651b0b8
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.4.1.whl
507 MB
sha256:66ca0c38877c77e203097edf5821caeebdc481c960838052daa30622823e009a
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.6.3.whl
504 MB
sha256:bc1511284a22f6891c4cb116be6bca2cf8aa2ed4dafeea2d28a8c54dc24b3f4d
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.8.0.whl
962 MB
sha256:e4937c5c10a2422585406fe919b803610d408df938f99c4a1b8abda1570cbc5b
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu11.8.0.whl
261 MB
sha256:44fa26c01750b4cf87ade14bed470002bd707c6338b2ea62312b9b2e9b16f3b2
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.4.1.whl
507 MB
sha256:edcaeffaddc2aa6c8c698297d6698542b267729be1aeb8ee274021257fb70292
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.6.3.whl
504 MB
sha256:e7cad4bfe1759b0c0b8b7058de9f63bb67e2d8e245d1dbc1301ba2a350e99b5b
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.8.0.whl
962 MB
sha256:9204b524da9b3e08af5ad0a16216e625efbc705f0aaccfe9bb163473dc354616
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu11.8.0.whl
261 MB
sha256:68f55b46906aefd67f6052693263c635d6cf21f96e8016ebef99f07138709491
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.4.1.whl
507 MB
sha256:22eb0dd5cb46956b183fd7e45fba8532212113b0229b583f5e4ae20b9cf3b975
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.6.3.whl
504 MB
sha256:6449d770bf6a3372bb010b74be22795440f24f21e98d541594f9d917536bbd93
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.8.0.whl
962 MB
sha256:17ef72545a6a9d0e87d0a8228508b9d1e29bde79eb4784562350e298c79e8cc8
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu11.8.0.whl
261 MB
sha256:4f2aaa558e3b519b0d1264e9261d929b29c20035f863010f268599b7024f8d35
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.4.1.whl
507 MB
sha256:e0c4fe761a60ba0e81f51349ffacce4b0c0fa5e85a41555e3ce02c7499fa1737
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.6.3.whl
504 MB
sha256:52b23131a304cf27493d1f0b5ad7696c216cb0f16af2f99bd56a0823c32ef089
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.8.0.whl
962 MB
sha256:6cd30e93833505c6fec323711a33154fee9241d791319f1041b5e69d2d8393e6
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu11.8.0.whl
261 MB
sha256:b65411158ee5f805d75b648be085d81fe61d7a83d1102911b747dc60a63927d4
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.4.1.whl
507 MB
sha256:660becd45825c7b4373da5e5f7f747527dd9346eff29d8c19b2fc3a433c3c803
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.6.3.whl
504 MB
sha256:e93cddd011af23eb7fe9844577871cc0f72362f2be764afff4d7e172811c9ddd
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.8.0.whl
962 MB
sha256:ace774a21f48426e376aaf50c3fba130c58d565527fa26839e3d55e04b3c9a84