Skip to content

support zero collision tables in ssd operator #10118

support zero collision tables in ssd operator

support zero collision tables in ssd operator #10118

Triggered via pull request April 28, 2025 04:54
Status Failure
Total duration 1h 38m 50s
Artifacts 30

fbgemm_gpu_ci_cuda.yml

on: pull_request
Matrix: build_artifact
Matrix: test_and_publish_artifact
Fit to window
Zoom out
Zoom in

Annotations

3 errors

Artifacts

Produced during runtime
Name Size Digest
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu11.8.0.whl
255 MB
sha256:4d69cdda7cd450208c19163ce5fc299294202e5cfe781b98f2c756eb41626222
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.6.3.whl
491 MB
sha256:73fad1404f60f6a6df0816a4559d278f924caec535b30a6af03751bcf84f2d8f
fbgemm_gpu_nightly_cuda_x86_clang_py3.10_cu12.8.0.whl
954 MB
sha256:e2240ddf3e89723723d89d01192afc31b229cc792a77665d354da846601ef9cd
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu11.8.0.whl
255 MB
sha256:eb40dc46e3120918d4b4b73a819b7a7b2b890e73f53031dbb7fc3f59208bf295
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.6.3.whl
491 MB
sha256:3aaf9ec0023ff17bf152cb54112db5527c3c5d8d3fe881f4eb1eeb1d4a1b1608
fbgemm_gpu_nightly_cuda_x86_clang_py3.11_cu12.8.0.whl
954 MB
sha256:1897fa34a0f585a8530ea03bc83b8645e58496095fad60e5a6b78f0aa8ca0e7e
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu11.8.0.whl
255 MB
sha256:a887e94909449192e8a13272a91ccd0f91eef93fceea93fb45958b9754ceece3
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.6.3.whl
491 MB
sha256:19651aac12ee240dd9a919a448d148bcd6ee44b893fb06014f638cba2924a601
fbgemm_gpu_nightly_cuda_x86_clang_py3.12_cu12.8.0.whl
954 MB
sha256:a2973fc322f3346aed69bcaaa2af819191f15f454e3ec905963a70c403c66a12
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu11.8.0.whl
255 MB
sha256:fc85a79a2b7b3c8f9ab826fff00e75e1b55c5bb52c7855890e2700b7709ca385
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.6.3.whl
491 MB
sha256:2f79d1629091aa9ac37a8aa8e98591b8128aeb3eb0799255d06678842b31a863
fbgemm_gpu_nightly_cuda_x86_clang_py3.13_cu12.8.0.whl
954 MB
sha256:db15ed091c359a380a81c9d624c346db92d975c6303f1f413e68246639b14657
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu11.8.0.whl
255 MB
sha256:db6406a0295765774204a323cad5bf684db84047aa25edffef5f21bc4bd0fe06
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.6.3.whl
491 MB
sha256:5f767aa87666d8eedb47860e7398960554d7c3d6d283e1007f32462fdad9ec90
fbgemm_gpu_nightly_cuda_x86_clang_py3.9_cu12.8.0.whl
954 MB
sha256:fdb6e6882b946fd18f96e9d360d7ee1666ee80b1853852fdd69320e377eff781
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu11.8.0.whl
264 MB
sha256:84fe2fab514301b0b4023e49433e99c78e302ad51cfe083fe5c2d6da079e6235
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.6.3.whl
499 MB
sha256:37923c8a3bf2b864430fd91313e58ceef1f82d8b31dc49c66dc99a577af33e69
fbgemm_gpu_nightly_cuda_x86_gcc_py3.10_cu12.8.0.whl
960 MB
sha256:7aa1e1d6825174665a445b860d68727e25013bb8417d17c8315f626d4a5e2c3b
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu11.8.0.whl
264 MB
sha256:2b377cdd27de0b40572658ae47d1a9ecf781503faec4d7c56ac9db6ce32fd1a3
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.6.3.whl
499 MB
sha256:c2f854babba328b20097f8a5d0ded078b189157b225a34132422bff04a3a82b4
fbgemm_gpu_nightly_cuda_x86_gcc_py3.11_cu12.8.0.whl
960 MB
sha256:3255e6003c9c930e05d59711d674aeb57e15ae6079ef314bf89d35f6f52226d5
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu11.8.0.whl
264 MB
sha256:b8f8138fd07fccfd3d37680899338b8e6f1be906203bf056aa00212e2074336a
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.6.3.whl
499 MB
sha256:e369f73c199d4abd0a11d5fe8d3c24d0a5ba0d99d76e71f4aeb88de87a595cc2
fbgemm_gpu_nightly_cuda_x86_gcc_py3.12_cu12.8.0.whl
960 MB
sha256:14ca4a3f71ba57c6add2ec6fa70d2232a8958b7f44a89f4a0c984e25e6a1ed11
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu11.8.0.whl
264 MB
sha256:02f17233c87f3d917e05ae0206a440433fc9587f2d7071a67e6674c2ac4adefc
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.6.3.whl
499 MB
sha256:787785f37b4f05aa384d68d762d49f74a714dbff4fc6ed60614ec45ebf895223
fbgemm_gpu_nightly_cuda_x86_gcc_py3.13_cu12.8.0.whl
960 MB
sha256:35fa90b28b17ec8e712e9c1bde642fac1afc928423eccf74af048fb6d9d7010e
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu11.8.0.whl
264 MB
sha256:a28b9d267c9d82839c1b12e113c7ca4c4471a6e3b25b5d9784a5420399171541
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.6.3.whl
499 MB
sha256:98ae84fd81699bd032db80152062ae3821cd8e0637d54f40289a0365c2099d0b
fbgemm_gpu_nightly_cuda_x86_gcc_py3.9_cu12.8.0.whl
960 MB
sha256:0398fa41689a204e57a7a9a31f620ab2c209c7df9aaa82fd7790461cad0a568a