Back out "Migrate make_pta_acc_format() away from old macros, v2]" (#… #5962
fbgemm_gpu_ci_genai.yml
on: push
Matrix: build_artifact
Matrix: test_and_publish_artifact
Annotations
11 errors
build_artifact (x86, linux.24xlarge, 3.12, 12.8.0, clang)
The process '/usr/bin/git' failed with exit code 128
|
build_artifact (x86, linux.24xlarge, 3.12, 12.8.0, clang)
Fetched in submodule path 'external/cutlass', but it did not contain 3ed8d2ec4ba35ef5d9d8353826209b6f868f63d3. Direct fetching of that commit failed.
|
build_artifact (x86, linux.24xlarge, 3.12, 12.8.0, clang)
Unable to create '/__w/FBGEMM/FBGEMM/.git/modules/external/cutlass/shallow.lock': File exists.
|
build_artifact (x86, linux.24xlarge, 3.12, 12.8.0, clang)
Unable to create '/__w/FBGEMM/FBGEMM/.git/modules/external/cutlass/shallow.lock': File exists.
|
build_artifact (x86, linux.24xlarge, 3.12, 12.8.0, gcc)
The self-hosted runner lost communication with the server. Verify the machine is running and has a healthy network connection. Anything in your workflow that terminates the runner process, starves it for CPU/Memory, or blocks its network access can cause this error.
|
build_artifact (x86, linux.24xlarge, 3.13, 12.8.0, gcc)
The self-hosted runner lost communication with the server. Verify the machine is running and has a healthy network connection. Anything in your workflow that terminates the runner process, starves it for CPU/Memory, or blocks its network access can cause this error.
|
build_artifact (x86, linux.24xlarge, 3.11, 12.8.0, gcc)
The self-hosted runner lost communication with the server. Verify the machine is running and has a healthy network connection. Anything in your workflow that terminates the runner process, starves it for CPU/Memory, or blocks its network access can cause this error.
|
test_and_publish_artifact (x86, linux.g5.4xlarge.nvidia.gpu, 3.12, 12.8.0, 12.6.3, clang)
Unable to download artifact(s): Artifact not found for name: fbgemm_gpu_nightly_genai_x86_clang_py3.12_cu12.8.0.whl
Please ensure that your artifact is not expired and the artifact was uploaded using a compatible version of toolkit/upload-artifact.
For more information, visit the GitHub Artifacts FAQ: https://github.com/actions/toolkit/blob/main/packages/artifact/docs/faq.md
|
test_and_publish_artifact (x86, linux.g5.4xlarge.nvidia.gpu, 3.12, 12.8.0, 12.6.3, gcc)
Unable to download artifact(s): Artifact not found for name: fbgemm_gpu_nightly_genai_x86_gcc_py3.12_cu12.8.0.whl
Please ensure that your artifact is not expired and the artifact was uploaded using a compatible version of toolkit/upload-artifact.
For more information, visit the GitHub Artifacts FAQ: https://github.com/actions/toolkit/blob/main/packages/artifact/docs/faq.md
|
test_and_publish_artifact (x86, linux.g5.4xlarge.nvidia.gpu, 3.11, 12.8.0, 12.6.3, gcc)
Unable to download artifact(s): Artifact not found for name: fbgemm_gpu_nightly_genai_x86_gcc_py3.11_cu12.8.0.whl
Please ensure that your artifact is not expired and the artifact was uploaded using a compatible version of toolkit/upload-artifact.
For more information, visit the GitHub Artifacts FAQ: https://github.com/actions/toolkit/blob/main/packages/artifact/docs/faq.md
|
test_and_publish_artifact (x86, linux.g5.4xlarge.nvidia.gpu, 3.13, 12.8.0, 12.6.3, gcc)
Unable to download artifact(s): Artifact not found for name: fbgemm_gpu_nightly_genai_x86_gcc_py3.13_cu12.8.0.whl
Please ensure that your artifact is not expired and the artifact was uploaded using a compatible version of toolkit/upload-artifact.
For more information, visit the GitHub Artifacts FAQ: https://github.com/actions/toolkit/blob/main/packages/artifact/docs/faq.md
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
fbgemm_gpu_nightly_genai_x86_clang_py3.10_cu11.8.0.whl
|
5.25 MB |
sha256:3609a99512687ece854aacb28c7399fb90998259f258665e73f079f615d07e85
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.10_cu12.6.3.whl
|
11.9 MB |
sha256:db2ad11fb1c3e791fb6df1160060d6d35404d406659eba6fe93f860a0b382277
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.10_cu12.8.0.whl
|
17.5 MB |
sha256:cebae7ffb29236eb008b7a4276429ecb27242a429f7bdf137242caa67877edae
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.11_cu11.8.0.whl
|
5.25 MB |
sha256:6f175951aaf04ee7526c1e7c2bd47794d3d716b1b693600b45b9152364b7f786
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.11_cu12.6.3.whl
|
11.9 MB |
sha256:478e419f4c04d3990943495ee3714c10bcc386738b1825759245c73f04e80940
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.11_cu12.8.0.whl
|
17.5 MB |
sha256:8f9ae9515834bd7fbc04e269a9e354c0ab99865e61a6377f350650b38feb8ae1
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.12_cu11.8.0.whl
|
5.25 MB |
sha256:ba6498463fe2e591e136d7667b2552724835ddb97c4b396df6b5e88ba025ea91
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.12_cu12.6.3.whl
|
11.9 MB |
sha256:72e940ca54b64f17dd1faa599e65a1b92e20ef23071f5505a581b2675304c17e
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.13_cu11.8.0.whl
|
5.25 MB |
sha256:12db331e15d277eb5e0639379186fdf51c4f31ea2ae9ca6afa585ba52fc5f026
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.13_cu12.6.3.whl
|
11.9 MB |
sha256:28d77ca9a822e4acce0055a25ae00c43834cceca8130168a841a1bd15970adb5
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.13_cu12.8.0.whl
|
17.5 MB |
sha256:a08929cc194f8a7dbb29927442c50074335e67c936e6188116d19659fc9b801a
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.9_cu11.8.0.whl
|
5.25 MB |
sha256:29955b7409117b3aae00e510a43f5556a0bbbc3400dfa007a8f1c6d3cbd9eef4
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.9_cu12.6.3.whl
|
11.9 MB |
sha256:42d95842a02004b5cd31560159b88175d8e43a33e5d0bc8f55ef5fc11945d1a9
|
|
fbgemm_gpu_nightly_genai_x86_clang_py3.9_cu12.8.0.whl
|
17.5 MB |
sha256:81e188828545ee1cdc2009ff32c7b7ff7c507d06bc943565717fb81122767fa1
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.10_cu11.8.0.whl
|
5.15 MB |
sha256:70fe688e54ecfd7f12f3cf7edda988dc89845d4a943fbb022acb9ade0129b00b
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.10_cu12.6.3.whl
|
11.8 MB |
sha256:3525dc3cd4f5cc95bc4d190855cb4d81c574446e6f3d353cddd723bfee124d48
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.10_cu12.8.0.whl
|
17.5 MB |
sha256:773eca1e583b929c54f1c0875a5ba7ce591592eaf9596797fcc70d0a36f4bfa2
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.11_cu11.8.0.whl
|
5.15 MB |
sha256:daf86fa19b44a4bcaa14718e393f66516e065cc4b659da891bf70bd781568f26
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.11_cu12.6.3.whl
|
11.8 MB |
sha256:e9defc64455ac0aa23490dc4a68045f8f8bb6555d69b7c07799717f2af89b88d
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.12_cu11.8.0.whl
|
5.15 MB |
sha256:19bce95daef4ec5818963339f916e8198c7d528ed13758a336e160d3bab444f1
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.12_cu12.6.3.whl
|
11.8 MB |
sha256:d02dd793e74876303dfd566fc723dd3ff5f5969e14f245171d6c746c85ebfd0f
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.13_cu11.8.0.whl
|
5.15 MB |
sha256:278ad82f638598c4f48b9fdc7e036141a71977324eb886194656cc5dd6cb06c0
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.13_cu12.6.3.whl
|
11.8 MB |
sha256:337607d87ce68ff68ee7efd58ba382497bae069dd661cb6e75e893b0af1eb7d4
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.9_cu11.8.0.whl
|
5.15 MB |
sha256:27f7cd304c9cfbd4d9f8f9ff2ba735cd20b94aa205c737a2d33652ede70dd3b7
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.9_cu12.6.3.whl
|
11.8 MB |
sha256:1ca0ce4835412230fe513e68d1e336b1a1f30b93a84f90f6c1372687c3b4e20c
|
|
fbgemm_gpu_nightly_genai_x86_gcc_py3.9_cu12.8.0.whl
|
17.5 MB |
sha256:e403675e969a49c43bfaacdd4531bbadd66284a65d4569c94cd316d2ec711846
|
|