Skip to content

New tests #21

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
May 7, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 48 additions & 56 deletions rayflare/matrix_formalism/ideal_cases.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,47 +23,45 @@ def lambertian_matrix(angle_vector, theta_intv, surf_name, structpath,
savepath_RT = os.path.join(structpath, surf_name + front_or_rear + 'RT.npz')
savepath_A = os.path.join(structpath, surf_name + front_or_rear + 'A.npz')

if os.path.isfile(savepath_RT) and save:
print('Existing angular redistribution matrices found')
allArray = load_npz(savepath_RT)
if os.path.isfile(savepath_RT):
print('Existing angular redistribution matrices found')
allArray = load_npz(savepath_RT)
return allArray

else:

theta_values = np.unique(angle_vector[angle_vector[:,1] < np.pi/2,1])
dtheta = np.diff(theta_intv[theta_intv <= np.pi/2])

dP = np.cos(theta_values)*dtheta
theta_values = np.unique(angle_vector[angle_vector[:,1] < np.pi/2,1])
dtheta = np.diff(theta_intv[theta_intv <= np.pi/2])

# matrix has indexing (out, in): row picks out 'out' entry, column picks out which v0 element
dP = np.cos(theta_values)*dtheta

# since it doesn't matter what the incidence angle is for Lambertian scattering, all the columns rows be identical!
# matrix has indexing (out, in): row picks out 'out' entry, column picks out which v0 element

# how many phi entries are there for each theta?
# since it doesn't matter what the incidence angle is for Lambertian scattering, all the columns rows be identical!

n_phis = [np.sum(angle_vector[:,1] == theta) for theta in theta_values]
# how many phi entries are there for each theta?

column = [x for sublist in [[dP[i1]/n]*n for i1, n in enumerate(n_phis)] for x in sublist]
n_phis = [np.sum(angle_vector[:,1] == theta) for theta in theta_values]

whole_matrix = np.vstack([column]*int(len(angle_vector)/2)).T
column = [x for sublist in [[dP[i1]/n]*n for i1, n in enumerate(n_phis)] for x in sublist]

# renormalize (rounding errors)
whole_matrix = np.vstack([column]*int(len(angle_vector)/2)).T

whole_matrix_R = whole_matrix/np.sum(whole_matrix,0)
# renormalize (rounding errors)

whole_matrix_T = np.zeros_like(whole_matrix_R)
whole_matrix_R = whole_matrix/np.sum(whole_matrix,0)

whole_matrix = np.vstack([whole_matrix_R, whole_matrix_T])
whole_matrix_T = np.zeros_like(whole_matrix_R)

print(whole_matrix.shape)
whole_matrix = np.vstack([whole_matrix_R, whole_matrix_T])

A_matrix = np.zeros((1,int(len(angle_vector)/2)))
A_matrix = np.zeros((1,int(len(angle_vector)/2)))

allArray = COO(whole_matrix)
absArray = COO(A_matrix)
if save:
save_npz(savepath_RT, allArray)
save_npz(savepath_A, absArray)
allArray = COO(whole_matrix)
absArray = COO(A_matrix)

if save:
save_npz(savepath_RT, allArray)
save_npz(savepath_A, absArray)

return allArray

Expand All @@ -87,53 +85,47 @@ def mirror_matrix(angle_vector, theta_intv, phi_intv, surf_name, options, struct
savepath_RT = os.path.join(structpath, surf_name + front_or_rear + 'RT.npz')
savepath_A = os.path.join(structpath, surf_name + front_or_rear + 'A.npz')

if os.path.isfile(savepath_RT) and save:
print('Existing angular redistribution matrices found')
allArray = load_npz(savepath_RT)

else:

if front_or_rear == "front":
if os.path.isfile(savepath_RT):
print('Existing angular redistribution matrices found')
allArray = load_npz(savepath_RT)
return allArray

angle_vector_th = angle_vector[:int(len(angle_vector)/2),1]
angle_vector_phi = angle_vector[:int(len(angle_vector)/2),2]

phis_out = fold_phi(angle_vector_phi + np.pi, options['phi_symmetry'])
if front_or_rear == "front":

angle_vector_th = angle_vector[:int(len(angle_vector)/2),1]
angle_vector_phi = angle_vector[:int(len(angle_vector)/2),2]

else:
angle_vector_th = angle_vector[int(len(angle_vector) / 2):, 1]
angle_vector_phi = angle_vector[int(len(angle_vector) / 2):, 2]
phis_out = fold_phi(angle_vector_phi + np.pi, options['phi_symmetry'])

phis_out = fold_phi(angle_vector_phi + np.pi, options['phi_symmetry'])

# matrix will be all zeros with just one '1' in each column/row. Just need to determine where it goes
else:
angle_vector_th = angle_vector[int(len(angle_vector) / 2):, 1]
angle_vector_phi = angle_vector[int(len(angle_vector) / 2):, 2]

binned_theta = np.digitize(angle_vector_th, theta_intv, right=True) - 1
phis_out = fold_phi(angle_vector_phi + np.pi, options['phi_symmetry'])

# print(binned_theta_out, theta_out, theta_intv)
# matrix will be all zeros with just one '1' in each column/row. Just need to determine where it goes

# print(binned_theta_in)
# print(binned_theta_out)
# -1 to give the correct index for the bins in phi_intv
binned_theta = np.digitize(angle_vector_th, theta_intv, right=True) - 1

bin_in = np.arange(len(angle_vector_phi))

bin_in = np.arange(len(angle_vector_phi))
phi_ind = [np.digitize(phi, phi_intv[binned_theta[i1]], right=True) - 1 for i1, phi in enumerate(phis_out)]
overall_bin = [np.argmin(abs(angle_vector[:,0] - binned_theta[i1])) + phi_i for i1, phi_i in enumerate(phi_ind)]

phi_ind = [np.digitize(phi, phi_intv[binned_theta[i1]], right=True) - 1 for i1, phi in enumerate(phis_out)]
overall_bin = [np.argmin(abs(angle_vector[:,0] - binned_theta[i1])) + phi_i for i1, phi_i in enumerate(phi_ind)]
whole_matrix = np.zeros((len(overall_bin)*2, len(overall_bin)))

whole_matrix = np.zeros((len(overall_bin)*2, len(overall_bin)))
whole_matrix[overall_bin, bin_in] = 1

whole_matrix[overall_bin, bin_in] = 1

A_matrix = np.zeros((1, len(overall_bin)))

A_matrix = np.zeros((1, len(overall_bin)))
allArray = COO(whole_matrix)
absArray = COO(A_matrix)

allArray = COO(whole_matrix)
absArray = COO(A_matrix)
if save:
save_npz(savepath_RT, allArray)
save_npz(savepath_A, absArray)
if save:
save_npz(savepath_RT, allArray)
save_npz(savepath_A, absArray)

return allArray
Loading