Skip to content

Commit 5151d13

Browse files
author
Release Manager
committed
gh-36618: `sage.modular`: Update `# needs`, doctest cosmetics <!-- ^^^^^ Please provide a concise, informative and self-explanatory title. Don't put issue numbers in there, do this in the PR body below. For example, instead of "Fixes #1234" use "Introduce new method to calculate 1+1" --> <!-- Describe your changes here in detail --> <!-- Why is this change required? What problem does it solve? --> <!-- If this PR resolves an open issue, please link to it here. For example "Fixes #12345". --> Cherry-picked from #35095. <!-- If your change requires a documentation PR, please link it appropriately. --> ### 📝 Checklist <!-- Put an `x` in all the boxes that apply. --> <!-- If your change requires a documentation PR, please link it appropriately --> <!-- If you're unsure about any of these, don't hesitate to ask. We're here to help! --> <!-- Feel free to remove irrelevant items. --> - [x] The title is concise, informative, and self-explanatory. - [ ] The description explains in detail what this PR is about. - [x] I have linked a relevant issue or discussion. - [ ] I have created tests covering the changes. - [ ] I have updated the documentation accordingly. ### ⌛ Dependencies <!-- List all open PRs that this PR logically depends on - #12345: short description why this is a dependency - #34567: ... --> <!-- If you're unsure about any of these, don't hesitate to ask. We're here to help! --> URL: #36618 Reported by: Matthias Köppe Reviewer(s): David Coudert
2 parents 6454751 + 4e33539 commit 5151d13

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

92 files changed

+807
-512
lines changed

src/sage/modular/abvar/abvar.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# -*- coding: utf-8 -*-
1+
# sage.doctest: needs sage.libs.flint sage.libs.pari
22
"""
33
Base class for modular abelian varieties
44
@@ -317,7 +317,7 @@ def base_extend(self, K):
317317
318318
sage: A = J0(37); A
319319
Abelian variety J0(37) of dimension 2
320-
sage: A.base_extend(QQbar)
320+
sage: A.base_extend(QQbar) # needs sage.rings.number_field
321321
Abelian variety J0(37) over Algebraic Field of dimension 2
322322
sage: A.base_extend(GF(7))
323323
Abelian variety J0(37) over Finite Field of size 7 of dimension 2

src/sage/modular/abvar/abvar_newform.py

+1
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
# sage.doctest: needs sage.libs.pari
12
"""
23
Abelian varieties attached to newforms
34

src/sage/modular/abvar/finite_subgroup.py

+48-25
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
# sage.doctest: needs sage.libs.pari
12
r"""
23
Finite subgroups of modular abelian varieties
34
@@ -178,7 +179,8 @@ def lattice(self):
178179
EXAMPLES::
179180
180181
sage: J = J0(33); C = J[0].cuspidal_subgroup(); C
181-
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
182+
Finite subgroup with invariants [5] over QQ of
183+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
182184
sage: C.lattice()
183185
Free module of degree 6 and rank 2 over Integer Ring
184186
Echelon basis matrix:
@@ -197,7 +199,8 @@ def _relative_basis_matrix(self):
197199
sage: A = J0(43)[1]; A
198200
Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
199201
sage: C = A.cuspidal_subgroup(); C
200-
Finite subgroup with invariants [7] over QQ of Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
202+
Finite subgroup with invariants [7] over QQ of
203+
Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
201204
sage: C._relative_basis_matrix()
202205
[ 1 0 0 0]
203206
[ 0 1/7 6/7 5/7]
@@ -262,7 +265,7 @@ def __richcmp__(self, other, op):
262265

263266
def is_subgroup(self, other):
264267
"""
265-
Return True exactly if self is a subgroup of other, and both are
268+
Return ``True`` exactly if ``self`` is a subgroup of ``other``, and both are
266269
defined as subgroups of the same ambient abelian variety.
267270
268271
EXAMPLES::
@@ -302,8 +305,9 @@ def __add__(self, other):
302305
303306
An example where the parent abelian varieties are different::
304307
305-
A = J0(48); A[0].cuspidal_subgroup() + A[1].cuspidal_subgroup()
306-
Finite subgroup with invariants [2, 4, 4] over QQ of Abelian subvariety of dimension 2 of J0(48)
308+
sage: A = J0(48); A[0].cuspidal_subgroup() + A[1].cuspidal_subgroup()
309+
Finite subgroup with invariants [2, 4, 4] over QQ of
310+
Abelian subvariety of dimension 2 of J0(48)
307311
"""
308312
if not isinstance(other, FiniteSubgroup):
309313
raise TypeError("only addition of two finite subgroups is defined")
@@ -330,7 +334,8 @@ def exponent(self):
330334
331335
sage: t = J0(33).hecke_operator(7)
332336
sage: G = t.kernel()[0]; G
333-
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of Abelian variety J0(33) of dimension 3
337+
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of
338+
Abelian variety J0(33) of dimension 3
334339
sage: G.exponent()
335340
4
336341
"""
@@ -343,7 +348,7 @@ def exponent(self):
343348

344349
def intersection(self, other):
345350
"""
346-
Return the intersection of the finite subgroups self and other.
351+
Return the intersection of the finite subgroups ``self`` and ``other``.
347352
348353
INPUT:
349354
@@ -358,12 +363,15 @@ def intersection(self, other):
358363
sage: E11a0, E11a1, B = J0(33)
359364
sage: G = E11a0.torsion_subgroup(6); H = E11a0.torsion_subgroup(9)
360365
sage: G.intersection(H)
361-
Finite subgroup with invariants [3, 3] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
366+
Finite subgroup with invariants [3, 3] over QQ of
367+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
362368
sage: W = E11a1.torsion_subgroup(15)
363369
sage: G.intersection(W)
364-
Finite subgroup with invariants [] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
370+
Finite subgroup with invariants [] over QQ of
371+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
365372
sage: E11a0.intersection(E11a1)[0]
366-
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
373+
Finite subgroup with invariants [5] over QQ of
374+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
367375
368376
We intersect subgroups of different abelian varieties.
369377
@@ -372,27 +380,35 @@ def intersection(self, other):
372380
sage: E11a0, E11a1, B = J0(33)
373381
sage: G = E11a0.torsion_subgroup(5); H = E11a1.torsion_subgroup(5)
374382
sage: G.intersection(H)
375-
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
383+
Finite subgroup with invariants [5] over QQ of
384+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
376385
sage: E11a0.intersection(E11a1)[0]
377-
Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
386+
Finite subgroup with invariants [5] over QQ of
387+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
378388
379389
We intersect abelian varieties with subgroups::
380390
381391
sage: t = J0(33).hecke_operator(7)
382392
sage: G = t.kernel()[0]; G
383-
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of Abelian variety J0(33) of dimension 3
393+
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of
394+
Abelian variety J0(33) of dimension 3
384395
sage: A = J0(33).old_subvariety()
385396
sage: A.intersection(G)
386-
Finite subgroup with invariants [2, 2, 2, 2] over QQ of Abelian subvariety of dimension 2 of J0(33)
397+
Finite subgroup with invariants [2, 2, 2, 2] over QQ of
398+
Abelian subvariety of dimension 2 of J0(33)
387399
sage: A.hecke_operator(7).kernel()[0]
388-
Finite subgroup with invariants [2, 2, 2, 2] over QQ of Abelian subvariety of dimension 2 of J0(33)
400+
Finite subgroup with invariants [2, 2, 2, 2] over QQ of
401+
Abelian subvariety of dimension 2 of J0(33)
389402
sage: B = J0(33).new_subvariety()
390403
sage: B.intersection(G)
391-
Finite subgroup with invariants [4, 4] over QQ of Abelian subvariety of dimension 1 of J0(33)
404+
Finite subgroup with invariants [4, 4] over QQ of
405+
Abelian subvariety of dimension 1 of J0(33)
392406
sage: B.hecke_operator(7).kernel()[0]
393-
Finite subgroup with invariants [4, 4] over QQ of Abelian subvariety of dimension 1 of J0(33)
407+
Finite subgroup with invariants [4, 4] over QQ of
408+
Abelian subvariety of dimension 1 of J0(33)
394409
sage: A.intersection(B)[0]
395-
Finite subgroup with invariants [3, 3] over QQ of Abelian subvariety of dimension 2 of J0(33)
410+
Finite subgroup with invariants [3, 3] over QQ of
411+
Abelian subvariety of dimension 2 of J0(33)
396412
"""
397413
from .abvar import is_ModularAbelianVariety
398414
A = self.abelian_variety()
@@ -736,13 +752,15 @@ def subgroup(self, gens):
736752
737753
sage: J = J0(23)
738754
sage: G = J.torsion_subgroup(11); G
739-
Finite subgroup with invariants [11, 11, 11, 11] over QQ of Abelian variety J0(23) of dimension 2
755+
Finite subgroup with invariants [11, 11, 11, 11] over QQ of
756+
Abelian variety J0(23) of dimension 2
740757
741758
We create the subgroup of the 11-torsion subgroup of `J_0(23)`
742759
generated by the first `11`-torsion point::
743760
744761
sage: H = G.subgroup([G.0]); H
745-
Finite subgroup with invariants [11] over QQbar of Abelian variety J0(23) of dimension 2
762+
Finite subgroup with invariants [11] over QQbar of
763+
Abelian variety J0(23) of dimension 2
746764
sage: H.invariants()
747765
[11]
748766
@@ -773,7 +791,8 @@ def invariants(self):
773791
774792
sage: J = J0(38)
775793
sage: C = J.cuspidal_subgroup(); C
776-
Finite subgroup with invariants [3, 45] over QQ of Abelian variety J0(38) of dimension 4
794+
Finite subgroup with invariants [3, 45] over QQ of
795+
Abelian variety J0(38) of dimension 4
777796
sage: v = C.invariants(); v
778797
[3, 45]
779798
sage: v[0] = 5
@@ -786,12 +805,14 @@ def invariants(self):
786805
::
787806
788807
sage: C * 3
789-
Finite subgroup with invariants [15] over QQ of Abelian variety J0(38) of dimension 4
808+
Finite subgroup with invariants [15] over QQ of
809+
Abelian variety J0(38) of dimension 4
790810
791811
An example involving another cuspidal subgroup::
792812
793813
sage: C = J0(22).cuspidal_subgroup(); C
794-
Finite subgroup with invariants [5, 5] over QQ of Abelian variety J0(22) of dimension 2
814+
Finite subgroup with invariants [5, 5] over QQ of
815+
Abelian variety J0(22) of dimension 2
795816
sage: C.lattice()
796817
Free module of degree 4 and rank 4 over Integer Ring
797818
Echelon basis matrix:
@@ -843,7 +864,8 @@ def __init__(self, abvar, lattice, field_of_definition=None, check=True):
843864
844865
sage: J = J0(11)
845866
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
846-
Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
867+
Finite subgroup with invariants [15] over QQbar of
868+
Abelian variety J0(11) of dimension 1
847869
"""
848870
if field_of_definition is None:
849871
from sage.rings.qqbar import QQbar as field_of_definition
@@ -868,7 +890,8 @@ def lattice(self):
868890
869891
sage: J = J0(11)
870892
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
871-
Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
893+
Finite subgroup with invariants [15] over QQbar of
894+
Abelian variety J0(11) of dimension 1
872895
sage: G.lattice()
873896
Free module of degree 2 and rank 2 over Integer Ring
874897
Echelon basis matrix:

src/sage/modular/abvar/homology.py

+12-6
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
# sage.doctest: needs sage.libs.flint sage.libs.pari
12
r"""
23
Homology of modular abelian varieties
34
@@ -37,7 +38,8 @@
3738
[-4 0]
3839
[ 0 -4]
3940
sage: a.T(7)
40-
Hecke operator T_7 on Submodule of rank 2 of Integral Homology of Abelian variety J0(43) of dimension 3
41+
Hecke operator T_7 on
42+
Submodule of rank 2 of Integral Homology of Abelian variety J0(43) of dimension 3
4143
"""
4244

4345
# ****************************************************************************
@@ -272,7 +274,8 @@ def hecke_matrix(self, n):
272274
273275
sage: J = J0(23)
274276
sage: J.homology(QQ[I]).hecke_matrix(3).parent()
275-
Full MatrixSpace of 4 by 4 dense matrices over Number Field in I with defining polynomial x^2 + 1 with I = 1*I
277+
Full MatrixSpace of 4 by 4 dense matrices over
278+
Number Field in I with defining polynomial x^2 + 1 with I = 1*I
276279
"""
277280
raise NotImplementedError
278281

@@ -694,16 +697,19 @@ def hecke_bound(self):
694697

695698
def hecke_matrix(self, n):
696699
"""
697-
Return the matrix of the n-th Hecke operator acting on this
700+
Return the matrix of the `n`-th Hecke operator acting on this
698701
homology group.
699702
700703
EXAMPLES::
701704
702705
sage: d = J0(125).homology(GF(17)).decomposition(2); d
703706
[
704-
Submodule of rank 4 of Homology with coefficients in Finite Field of size 17 of Abelian variety J0(125) of dimension 8,
705-
Submodule of rank 4 of Homology with coefficients in Finite Field of size 17 of Abelian variety J0(125) of dimension 8,
706-
Submodule of rank 8 of Homology with coefficients in Finite Field of size 17 of Abelian variety J0(125) of dimension 8
707+
Submodule of rank 4 of Homology with coefficients in Finite Field of size 17
708+
of Abelian variety J0(125) of dimension 8,
709+
Submodule of rank 4 of Homology with coefficients in Finite Field of size 17
710+
of Abelian variety J0(125) of dimension 8,
711+
Submodule of rank 8 of Homology with coefficients in Finite Field of size 17
712+
of Abelian variety J0(125) of dimension 8
707713
]
708714
sage: t = d[0].hecke_matrix(17); t
709715
[16 15 15 0]

src/sage/modular/abvar/homspace.py

+5-2
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
# sage.doctest: needs sage.libs.flint sage.libs.pari
12
"""
23
Spaces of homomorphisms between modular abelian varieties
34
@@ -16,7 +17,8 @@
1617
Simple abelian subvariety 37b(1,37) of dimension 1 of J0(37)
1718
]
1819
sage: D[0].intersection(D[1])
19-
(Finite subgroup with invariants [2, 2] over QQ of Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37),
20+
(Finite subgroup with invariants [2, 2] over QQ of
21+
Simple abelian subvariety 37a(1,37) of dimension 1 of J0(37),
2022
Simple abelian subvariety of dimension 0 of J0(37))
2123
2224
As an abstract product, since these newforms are distinct, the
@@ -218,7 +220,8 @@ def __init__(self, domain, codomain, cat):
218220
EXAMPLES::
219221
220222
sage: H = Hom(J0(11), J0(22)); H
221-
Space of homomorphisms from Abelian variety J0(11) of dimension 1 to Abelian variety J0(22) of dimension 2
223+
Space of homomorphisms from Abelian variety J0(11) of dimension 1
224+
to Abelian variety J0(22) of dimension 2
222225
sage: Hom(J0(11), J0(11))
223226
Endomorphism ring of Abelian variety J0(11) of dimension 1
224227
sage: type(H)

src/sage/modular/abvar/lseries.py

+8-7
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
# sage.doctest: needs sage.libs.flint
12
"""
23
`L`-series of modular abelian varieties
34
@@ -99,29 +100,29 @@ def __call__(self, s, prec=53):
99100
EXAMPLES::
100101
101102
sage: L = J0(23).lseries()
102-
sage: L(1)
103+
sage: L(1) # needs sage.symbolic
103104
0.248431866590600
104-
sage: L(1, prec=100)
105+
sage: L(1, prec=100) # needs sage.symbolic
105106
0.24843186659059968120725033931
106107
107108
sage: L = J0(389)[0].lseries()
108-
sage: L(1) # long time (2s) abstol 1e-10
109+
sage: L(1) # abstol 1e-10 # long time (2s), needs sage.symbolic
109110
-1.33139759782370e-19
110-
sage: L(1, prec=100) # long time (2s) abstol 1e-20
111+
sage: L(1, prec=100) # abstol 1e-20 # long time (2s), needs sage.symbolic
111112
6.0129758648142797032650287762e-39
112113
sage: L.rational_part()
113114
0
114115
115116
sage: L = J1(23)[0].lseries()
116-
sage: L(1)
117+
sage: L(1) # needs sage.symbolic
117118
0.248431866590600
118119
119120
sage: J = J0(11) * J1(11)
120-
sage: J.lseries()(1)
121+
sage: J.lseries()(1) # needs sage.symbolic
121122
0.0644356903227915
122123
123124
sage: L = JH(17,[2]).lseries()
124-
sage: L(1)
125+
sage: L(1) # needs sage.symbolic
125126
0.386769938387780
126127
127128
"""

src/sage/modular/abvar/morphism.py

+1
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
# sage.doctest: needs sage.libs.flint
12
r"""
23
Hecke operators and morphisms between modular abelian varieties
34

src/sage/modular/abvar/torsion_point.py

+9-5
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
# sage.doctest: needs sage.rings.number_field
12
"""
23
Torsion points on modular abelian varieties
34
@@ -30,10 +31,10 @@ class TorsionPoint(ModuleElement):
3031
- ``parent`` -- a finite subgroup of a modular abelian variety
3132
3233
- ``element`` -- a `\QQ`-vector space element that represents
33-
this element in terms of the ambient rational homology
34+
this element in terms of the ambient rational homology
3435
3536
- ``check`` -- bool (default: ``True``): whether to check that
36-
element is in the appropriate vector space
37+
element is in the appropriate vector space
3738
3839
EXAMPLES:
3940
@@ -78,7 +79,8 @@ def element(self):
7879
7980
sage: J = J0(11)
8081
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
81-
Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
82+
Finite subgroup with invariants [15] over QQbar of
83+
Abelian variety J0(11) of dimension 1
8284
sage: G.0.element()
8385
(1/3, 0)
8486
@@ -194,7 +196,7 @@ def _richcmp_(self, right, op):
194196
INPUT:
195197
196198
- ``self, right`` -- elements of the same finite abelian
197-
variety subgroup.
199+
variety subgroup.
198200
199201
- ``op`` -- comparison operator (see :mod:`sage.structure.richcmp`)
200202
@@ -255,10 +257,12 @@ def _relative_element(self):
255257
256258
EXAMPLES::
257259
260+
sage: # needs sage.libs.flint
258261
sage: A = J0(43)[1]; A
259262
Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
260263
sage: C = A.cuspidal_subgroup(); C
261-
Finite subgroup with invariants [7] over QQ of Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
264+
Finite subgroup with invariants [7] over QQ of
265+
Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
262266
sage: x = C.0; x
263267
[(0, 1/7, 0, 6/7, 0, 5/7)]
264268
sage: x._relative_element()

0 commit comments

Comments
 (0)