1
+ # sage.doctest: needs sage.libs.pari
1
2
r"""
2
3
Finite subgroups of modular abelian varieties
3
4
@@ -178,7 +179,8 @@ def lattice(self):
178
179
EXAMPLES::
179
180
180
181
sage: J = J0(33); C = J[0].cuspidal_subgroup(); C
181
- Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
182
+ Finite subgroup with invariants [5] over QQ of
183
+ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
182
184
sage: C.lattice()
183
185
Free module of degree 6 and rank 2 over Integer Ring
184
186
Echelon basis matrix:
@@ -197,7 +199,8 @@ def _relative_basis_matrix(self):
197
199
sage: A = J0(43)[1]; A
198
200
Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
199
201
sage: C = A.cuspidal_subgroup(); C
200
- Finite subgroup with invariants [7] over QQ of Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
202
+ Finite subgroup with invariants [7] over QQ of
203
+ Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
201
204
sage: C._relative_basis_matrix()
202
205
[ 1 0 0 0]
203
206
[ 0 1/7 6/7 5/7]
@@ -262,7 +265,7 @@ def __richcmp__(self, other, op):
262
265
263
266
def is_subgroup (self , other ):
264
267
"""
265
- Return True exactly if self is a subgroup of other, and both are
268
+ Return `` True`` exactly if `` self`` is a subgroup of `` other`` , and both are
266
269
defined as subgroups of the same ambient abelian variety.
267
270
268
271
EXAMPLES::
@@ -302,8 +305,9 @@ def __add__(self, other):
302
305
303
306
An example where the parent abelian varieties are different::
304
307
305
- A = J0(48); A[0].cuspidal_subgroup() + A[1].cuspidal_subgroup()
306
- Finite subgroup with invariants [2, 4, 4] over QQ of Abelian subvariety of dimension 2 of J0(48)
308
+ sage: A = J0(48); A[0].cuspidal_subgroup() + A[1].cuspidal_subgroup()
309
+ Finite subgroup with invariants [2, 4, 4] over QQ of
310
+ Abelian subvariety of dimension 2 of J0(48)
307
311
"""
308
312
if not isinstance (other , FiniteSubgroup ):
309
313
raise TypeError ("only addition of two finite subgroups is defined" )
@@ -330,7 +334,8 @@ def exponent(self):
330
334
331
335
sage: t = J0(33).hecke_operator(7)
332
336
sage: G = t.kernel()[0]; G
333
- Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of Abelian variety J0(33) of dimension 3
337
+ Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of
338
+ Abelian variety J0(33) of dimension 3
334
339
sage: G.exponent()
335
340
4
336
341
"""
@@ -343,7 +348,7 @@ def exponent(self):
343
348
344
349
def intersection (self , other ):
345
350
"""
346
- Return the intersection of the finite subgroups self and other.
351
+ Return the intersection of the finite subgroups `` self`` and `` other`` .
347
352
348
353
INPUT:
349
354
@@ -358,12 +363,15 @@ def intersection(self, other):
358
363
sage: E11a0, E11a1, B = J0(33)
359
364
sage: G = E11a0.torsion_subgroup(6); H = E11a0.torsion_subgroup(9)
360
365
sage: G.intersection(H)
361
- Finite subgroup with invariants [3, 3] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
366
+ Finite subgroup with invariants [3, 3] over QQ of
367
+ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
362
368
sage: W = E11a1.torsion_subgroup(15)
363
369
sage: G.intersection(W)
364
- Finite subgroup with invariants [] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
370
+ Finite subgroup with invariants [] over QQ of
371
+ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
365
372
sage: E11a0.intersection(E11a1)[0]
366
- Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
373
+ Finite subgroup with invariants [5] over QQ of
374
+ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
367
375
368
376
We intersect subgroups of different abelian varieties.
369
377
@@ -372,27 +380,35 @@ def intersection(self, other):
372
380
sage: E11a0, E11a1, B = J0(33)
373
381
sage: G = E11a0.torsion_subgroup(5); H = E11a1.torsion_subgroup(5)
374
382
sage: G.intersection(H)
375
- Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
383
+ Finite subgroup with invariants [5] over QQ of
384
+ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
376
385
sage: E11a0.intersection(E11a1)[0]
377
- Finite subgroup with invariants [5] over QQ of Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
386
+ Finite subgroup with invariants [5] over QQ of
387
+ Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
378
388
379
389
We intersect abelian varieties with subgroups::
380
390
381
391
sage: t = J0(33).hecke_operator(7)
382
392
sage: G = t.kernel()[0]; G
383
- Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of Abelian variety J0(33) of dimension 3
393
+ Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of
394
+ Abelian variety J0(33) of dimension 3
384
395
sage: A = J0(33).old_subvariety()
385
396
sage: A.intersection(G)
386
- Finite subgroup with invariants [2, 2, 2, 2] over QQ of Abelian subvariety of dimension 2 of J0(33)
397
+ Finite subgroup with invariants [2, 2, 2, 2] over QQ of
398
+ Abelian subvariety of dimension 2 of J0(33)
387
399
sage: A.hecke_operator(7).kernel()[0]
388
- Finite subgroup with invariants [2, 2, 2, 2] over QQ of Abelian subvariety of dimension 2 of J0(33)
400
+ Finite subgroup with invariants [2, 2, 2, 2] over QQ of
401
+ Abelian subvariety of dimension 2 of J0(33)
389
402
sage: B = J0(33).new_subvariety()
390
403
sage: B.intersection(G)
391
- Finite subgroup with invariants [4, 4] over QQ of Abelian subvariety of dimension 1 of J0(33)
404
+ Finite subgroup with invariants [4, 4] over QQ of
405
+ Abelian subvariety of dimension 1 of J0(33)
392
406
sage: B.hecke_operator(7).kernel()[0]
393
- Finite subgroup with invariants [4, 4] over QQ of Abelian subvariety of dimension 1 of J0(33)
407
+ Finite subgroup with invariants [4, 4] over QQ of
408
+ Abelian subvariety of dimension 1 of J0(33)
394
409
sage: A.intersection(B)[0]
395
- Finite subgroup with invariants [3, 3] over QQ of Abelian subvariety of dimension 2 of J0(33)
410
+ Finite subgroup with invariants [3, 3] over QQ of
411
+ Abelian subvariety of dimension 2 of J0(33)
396
412
"""
397
413
from .abvar import is_ModularAbelianVariety
398
414
A = self .abelian_variety ()
@@ -736,13 +752,15 @@ def subgroup(self, gens):
736
752
737
753
sage: J = J0(23)
738
754
sage: G = J.torsion_subgroup(11); G
739
- Finite subgroup with invariants [11, 11, 11, 11] over QQ of Abelian variety J0(23) of dimension 2
755
+ Finite subgroup with invariants [11, 11, 11, 11] over QQ of
756
+ Abelian variety J0(23) of dimension 2
740
757
741
758
We create the subgroup of the 11-torsion subgroup of `J_0(23)`
742
759
generated by the first `11`-torsion point::
743
760
744
761
sage: H = G.subgroup([G.0]); H
745
- Finite subgroup with invariants [11] over QQbar of Abelian variety J0(23) of dimension 2
762
+ Finite subgroup with invariants [11] over QQbar of
763
+ Abelian variety J0(23) of dimension 2
746
764
sage: H.invariants()
747
765
[11]
748
766
@@ -773,7 +791,8 @@ def invariants(self):
773
791
774
792
sage: J = J0(38)
775
793
sage: C = J.cuspidal_subgroup(); C
776
- Finite subgroup with invariants [3, 45] over QQ of Abelian variety J0(38) of dimension 4
794
+ Finite subgroup with invariants [3, 45] over QQ of
795
+ Abelian variety J0(38) of dimension 4
777
796
sage: v = C.invariants(); v
778
797
[3, 45]
779
798
sage: v[0] = 5
@@ -786,12 +805,14 @@ def invariants(self):
786
805
::
787
806
788
807
sage: C * 3
789
- Finite subgroup with invariants [15] over QQ of Abelian variety J0(38) of dimension 4
808
+ Finite subgroup with invariants [15] over QQ of
809
+ Abelian variety J0(38) of dimension 4
790
810
791
811
An example involving another cuspidal subgroup::
792
812
793
813
sage: C = J0(22).cuspidal_subgroup(); C
794
- Finite subgroup with invariants [5, 5] over QQ of Abelian variety J0(22) of dimension 2
814
+ Finite subgroup with invariants [5, 5] over QQ of
815
+ Abelian variety J0(22) of dimension 2
795
816
sage: C.lattice()
796
817
Free module of degree 4 and rank 4 over Integer Ring
797
818
Echelon basis matrix:
@@ -843,7 +864,8 @@ def __init__(self, abvar, lattice, field_of_definition=None, check=True):
843
864
844
865
sage: J = J0(11)
845
866
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
846
- Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
867
+ Finite subgroup with invariants [15] over QQbar of
868
+ Abelian variety J0(11) of dimension 1
847
869
"""
848
870
if field_of_definition is None :
849
871
from sage .rings .qqbar import QQbar as field_of_definition
@@ -868,7 +890,8 @@ def lattice(self):
868
890
869
891
sage: J = J0(11)
870
892
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
871
- Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
893
+ Finite subgroup with invariants [15] over QQbar of
894
+ Abelian variety J0(11) of dimension 1
872
895
sage: G.lattice()
873
896
Free module of degree 2 and rank 2 over Integer Ring
874
897
Echelon basis matrix:
0 commit comments