This backend provides ML-assisted labeling capabilities to accelerate your annotation workflow, supporting both object detection and instance segmentation tasks.
-
Dockerfile: The Dockerfile for building the backend container.
-
docker-compose.yml: The docker-compose file for running the backend.
-
_wsgi.py: WSGI app initializer.
-
start.sh: bash script to start the whole process.
-
model.py: The Python code for the ML backend model.
-
requirements.txt: The list of Python dependencies for the backend.
-
Clone the repository:
git clone https://github.com/seblful/label-studio-yolo-backend.git cd label-studio-yolo-backend
-
Create and prepare your model directory:
mkdir models cp /path/to/your/model.pt models/
-
Edit
.env
with your settings:BASIC_AUTH_USER= # Optional BASIC_AUTH_PASS= # Optional LOG_LEVEL=DEBUG MODEL_FILENAME=model.pt PORT=8080 LABEL_STUDIO_API_KEY= # API key from LS TASK_TYPE=segmentation # segmentation or detection
-
Deploy using the following command:
docker compose up
-
Add the model in project settings:
From the project settings, select the Model page and click Connect Model.
Add the URL
http://locallhost:9090
and save the model as an ML backend. -
Label in interactive mode
To use this functionality, activate Auto-Annotation.
Configure Docker daemon with proxy:
{
"registry-mirrors": ["https://registry.docker-cn.com"]
}
- Add support for obb and keypoints.
Contributions to this project are welcome. To contribute, please submit an issue or pull request.