Skip to content

Create tidy probability/density tibbles and plots of randomly generated and empirical data.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

spsanderson/TidyDensity

Folders and files

NameName
Last commit message
Last commit date
Jan 18, 2022
May 16, 2024
May 30, 2024
May 16, 2024
May 5, 2023
Jan 20, 2022
Apr 26, 2024
Jan 14, 2022
Feb 2, 2022
Dec 1, 2023
Oct 31, 2024
Jan 14, 2022
Jan 14, 2022
May 16, 2024
May 28, 2024
May 5, 2023
May 16, 2024
Dec 1, 2023
Jan 9, 2024
May 16, 2024

Repository files navigation

TidyDensity

CRAN_Status_Badge Lifecycle: stable PRs Welcome

The goal of {TidyDensity} is to make working with random numbers from different distributions easy. All tidy_ distribution functions provide the following components:

  • [r_]
  • [d_]
  • [q_]
  • [p_]

Installation

You can install the released version of {TidyDensity} from CRAN with:

install.packages("TidyDensity")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("spsanderson/TidyDensity")

Example

This is a basic example which shows you how to solve a common problem:

library(TidyDensity)
library(dplyr)
library(ggplot2)

tidy_normal()
#> # A tibble: 50 × 7
#>    sim_number     x       y    dx       dy     p       q
#>    <fct>      <int>   <dbl> <dbl>    <dbl> <dbl>   <dbl>
#>  1 1              1  0.991  -3.18 0.000487 0.839  0.991 
#>  2 1              2 -0.163  -3.05 0.00163  0.435 -0.163 
#>  3 1              3  2.19   -2.92 0.00454  0.986  2.19  
#>  4 1              4 -0.226  -2.78 0.0106   0.411 -0.226 
#>  5 1              5 -1.07   -2.65 0.0208   0.141 -1.07  
#>  6 1              6 -0.708  -2.52 0.0345   0.239 -0.708 
#>  7 1              7  0.343  -2.39 0.0488   0.634  0.343 
#>  8 1              8  0.264  -2.26 0.0600   0.604  0.264 
#>  9 1              9 -0.0531 -2.13 0.0667   0.479 -0.0531
#> 10 1             10  0.444  -2.00 0.0705   0.671  0.444 
#> # ℹ 40 more rows

An example plot of the tidy_normal data.

tn <- tidy_normal(.n = 100, .num_sims = 6)

tidy_autoplot(tn, .plot_type = "density")

tidy_autoplot(tn, .plot_type = "quantile")

tidy_autoplot(tn, .plot_type = "probability")

tidy_autoplot(tn, .plot_type = "qq")

We can also take a look at the plots when the number of simulations is greater than nine. This will automatically turn off the legend as it will become too noisy.

tn <- tidy_normal(.n = 100, .num_sims = 20)

tidy_autoplot(tn, .plot_type = "density")

tidy_autoplot(tn, .plot_type = "quantile")

tidy_autoplot(tn, .plot_type = "probability")

tidy_autoplot(tn, .plot_type = "qq")