Skip to content

Rename keras models function name #24

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions sqlflow_models/deep_embedding_cluster.py
Original file line number Diff line number Diff line change
@@ -106,10 +106,10 @@ def __init__(self,

self.clustering_layer = ClusteringLayer(name='clustering', n_clusters=self._n_clusters)

def default_optimizer(self):
def optimizer(self):
return self._cluster_optimizer

def default_loss(self):
def loss(self):
return self._default_loss

@staticmethod
8 changes: 2 additions & 6 deletions sqlflow_models/dnnclassifier.py
Original file line number Diff line number Diff line change
@@ -25,18 +25,14 @@ def call(self, inputs):
x = hidden_layer(x)
return self.prediction_layer(x)

def default_optimizer(self):
def optimizer(self):
"""Default optimizer name. Used in model.compile."""
return tf.keras.optimizers.Adagrad(lr=0.1)

def default_loss(self):
def loss(self):
"""Default loss function. Used in model.compile."""
return 'sparse_categorical_crossentropy'

def default_training_epochs(self):
"""Default training epochs. Used in model.fit."""
return 2

def prepare_prediction_column(self, prediction):
"""Return the class label of highest probability."""
return prediction.argmax(axis=-1)
13 changes: 5 additions & 8 deletions sqlflow_models/lstmclassifier.py
Original file line number Diff line number Diff line change
@@ -27,10 +27,10 @@ def __init__(self, feature_columns, stack_units=[32], hidden_size=64, n_classes=
if self.n_classes == 2:
# special setup for binary classification
pred_act = 'sigmoid'
self.loss = 'binary_crossentropy'
self._loss = 'binary_crossentropy'
else:
pred_act = 'softmax'
self.loss = 'categorical_crossentropy'
self._loss = 'categorical_crossentropy'
self.pred = tf.keras.layers.Dense(n_classes, activation=pred_act)

def call(self, inputs):
@@ -43,17 +43,14 @@ def call(self, inputs):
x = self.hidden(x)
return self.pred(x)

def default_optimizer(self):
def optimizer(self):
"""Default optimizer name. Used in model.compile."""
return 'adam'

def default_loss(self):
def loss(self):
"""Default loss function. Used in model.compile."""
return self.loss
return self._loss

def default_training_epochs(self):
"""Default training epochs. Used in model.fit."""
return 1

def prepare_prediction_column(self, prediction):
"""Return the class label of highest probability."""
6 changes: 3 additions & 3 deletions tests/base.py
Original file line number Diff line number Diff line change
@@ -22,11 +22,11 @@ def setUp(self):
def test_train_and_predict(self):
self.setUp()

self.model.compile(optimizer=self.model.default_optimizer(),
loss=self.model.default_loss(),
self.model.compile(optimizer=self.model.optimizer(),
loss=self.model.loss(),
metrics=["accuracy"])
self.model.fit(train_input_fn(self.features, self.label),
epochs=self.model.default_training_epochs(),
epochs=1,
steps_per_epoch=100, verbose=0)
loss, acc = self.model.evaluate(eval_input_fn(self.features, self.label))
print(loss, acc)
4 changes: 2 additions & 2 deletions tests/test_deep_embedding_cluster.py
Original file line number Diff line number Diff line change
@@ -90,8 +90,8 @@ def setUp(self):
def test_train_and_predict(self):
self.setUp()

self.model.compile(optimizer=self.model.default_optimizer(),
loss=self.model.default_loss())
self.model.compile(optimizer=self.model.optimizer(),
loss=self.model.loss())
self.model.sqlflow_train_loop(train_input_fn(self.features, self.label))
metric = evaluate(x=eval_input_fn(self.features, self.label), y=self.label, model=self.model)
print(metric)