Code for reproducing key results in the paper Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning by Thomas M. Moerland, Joost Broekens and Catholijn M. Jonker.
- Install recent versions of:
- Python 3
- Tensorflow
- Numpy (e.g.
pip install numpy
) - Matplotlib
- Clone this repository:
git clone https://github.com/tmoer/multimodal_varinf.git
Example:
python3 vae_main.py --logdir <logdir> --hpconfig network=1,n_rep=10,var_type='discrete',K=3,N=3,verbose=False
python3 vae_grid.py --logdir <logdir> --hpconfig network=1,n_epochs=75000,n_rep=5,var_type='continuous',z_size=8,n_flow=0,artificial_data=False,use_target_net=True,test_on_policy=True,verbose=False
For default hyper-parameters, look at the get_hps()
function in the vae_grid.py
and vae_main.py
scripts.
Run:
bash paper_toy.sh (Sec 4.1)
bash paper_grid.sh (Sec 4.2)
bash paper_grid_rl.sh (Sec 4.2)
@proceedings{moerland2017learning,
author = "Moerland, Thomas M. and Broekens, Joost and Jonker, Catholijn M.",
note = "arXiv preprint arXiv:1705.00470",
journal = "Scaling Up Reinforcement Learning (SURL) Workshop @ European Machine Learning Conference (ECML)",
title = "{Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning}",
year = "2017"
}