Skip to content

🎲 Create realistic test data for your Mongoose models with zero hassle!

License

Notifications You must be signed in to change notification settings

videsk/mongoose-dummy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

82 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🎲 Mongoose Dummy

Create realistic test data for your Mongoose models with zero hassle!

npm version License: LGPL-2.1

Mongoose Dummy is a powerful random data generator built specifically for Mongoose schemas. Generate realistic test data with support for complex relationships, nested objects, and custom generators. Perfect for testing, development, and seeding your MongoDB databases.

✨ Features

  • πŸ”Œ Seamless integration with Mongoose models
  • πŸ”„ Smart population of referenced models
  • πŸ“‹ Random selection from enum values
  • 🎯 Customizable field filters
  • πŸ”§ Flexible array length control
  • 🎨 Works with Faker.js and other data generation libraries
  • πŸ“¦ Support for nested objects and arrays
  • πŸ§ͺ Perfect for testing and development

πŸ“¦ Installation

npm install @videsk/mongoose-dummy

πŸš€ Quick Start

import mongoose from 'mongoose';
import MongooseDummy from '@videsk/mongoose-dummy';
import { faker } from '@faker-js/faker';

// Initialize with mongoose
const dummy = new MongooseDummy(mongoose);

// Add faker.js support
dummy.generators = { faker };

// Generate fake data
const fakeUser = dummy.model('User').generate();

πŸ“– Usage Guide

πŸ—οΈ Defining Schemas

Add the dummy property to any field you want to generate data for:

const userSchema = new mongoose.Schema({
  name: {
    type: String,
    dummy: ({ faker }) => faker.person.fullName()
  },
  email: {
    type: String,
    dummy: ({ faker }) => faker.internet.email()
  },
  address: {
    street: {
      type: String,
      dummy: ({ faker }) => faker.location.streetAddress()
    },
    city: {
      type: String,
      dummy: ({ faker }) => faker.location.city()
    }
  },
  createdAt: {
    type: Date,
    dummy: ({ faker }) => faker.date.past()
  }
});

πŸ”„ Working with References

Automatically populate referenced models:

const orderSchema = new mongoose.Schema({
  customer: {
    type: mongoose.Schema.Types.ObjectId,
    ref: 'User',
    populate: true,  // πŸ‘ˆ Will generate full user data
    dummy: true
  },
  products: [{
    type: mongoose.Schema.Types.ObjectId,
    ref: 'Product',
    populate: true,
    dummy: true
  }],
  total: {
    type: Number,
    dummy: ({ faker }) => faker.number.float({ min: 10, max: 1000 })
  }
});

πŸ“ Smart Enum Handling

const taskSchema = new mongoose.Schema({
  status: {
    type: String,
    enum: ['pending', 'in-progress', 'completed'],
    dummy: true  // πŸ‘ˆ Will randomly select from enum values
  },
  priority: {
    type: String,
    enum: ['low', 'medium', 'high'],
    dummy: true
  }
});

🎯 Custom Field Filters

Generate data only for specific fields:

// Only generate required fields
const requiredOnly = dummy.model('User').generate(
  options => options.required === true
);

// Only generate fields with specific validators
const validatedFields = dummy.model('User').generate(
  options => options.validate !== undefined
);

πŸ“š Array Configuration

Control the length of generated arrays:

// Global array length setting
const dummy = new MongooseDummy(mongoose);
dummy.setup({ arrayLength: 5 });

// Generate data with custom array length
const data = dummy.model('Order').generate();
// All arrays will have 5 items

πŸ”— Complex Relationships

Generate data with nested relationships and dependencies:

const companySchema = new mongoose.Schema({
  name: {
    type: String,
    dummy: ({ faker }) => faker.company.name()
  },
  employees: [{
    type: mongoose.Schema.Types.ObjectId,
    ref: 'User',
    populate: true,
    dummy: true
  }],
  departments: [{
    name: {
      type: String,
      dummy: ({ faker }) => faker.commerce.department()
    },
    manager: {
      type: mongoose.Schema.Types.ObjectId,
      ref: 'User',
      populate: true,
      dummy: true
    },
    budget: {
      type: Number,
      dummy: ({ faker }) => faker.number.int({ min: 10000, max: 1000000 })
    }
  }]
});

🎨 Custom Data Generation

Use values from other fields in your generators:

const productSchema = new mongoose.Schema({
  name: {
    type: String,
    dummy: ({ faker }) => faker.commerce.productName()
  },
  basePrice: {
    type: Number,
    dummy: ({ faker }) => faker.number.float({ min: 10, max: 1000 })
  },
  discountedPrice: {
    type: Number,
    dummy() {
      return this.basePrice * 0.8; // Access other generated fields
    }
  }
});

⚠️ Limitations

  • πŸ”„ Populate feature is limited to one level deep to prevent circular dependencies
  • 🏷️ Fields without a dummy key are ignored in generation
  • πŸ”’ Some Mongoose features like virtual fields are not supported

🀝 Contributing

Contributions are welcome! Please feel free to submit issues and pull requests.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ§ͺ Running Tests

npm test

πŸ“„ License

LGPL-2.1 License - Created with ❀️ by Videskβ„’

πŸ™ Acknowledgments

Special thanks to all contributors and the Mongoose community for making this project possible!