Skip to content

Report TBE data configuration with EEG-based indices estimation #10042

Report TBE data configuration with EEG-based indices estimation

Report TBE data configuration with EEG-based indices estimation #10042

Triggered via pull request April 25, 2025 18:51
Status Success
Total duration 52m 51s
Artifacts 20

fbgemm_gpu_ci_cpu.yml

on: pull_request
Matrix: build_artifact
Matrix: test_and_publish_artifact
Fit to window
Zoom out
Zoom in

Artifacts

Produced during runtime
Name Size Digest
fbgemm_gpu_nightly_cpu_arm_clang_py3.10.whl
4.05 MB
sha256:5e2c7a1473981fbacf884877bd3fcd325a9fb153583594d494647693793ac654
fbgemm_gpu_nightly_cpu_arm_clang_py3.11.whl
4.05 MB
sha256:2723b6237d3ed3944d11939a8ce4137464f7c8851080cd1c9f6eb4bbfc4eb4d1
fbgemm_gpu_nightly_cpu_arm_clang_py3.12.whl
4.05 MB
sha256:0e6881d91e37e1735d3a0dd7442f5b2f304dfffa609e698abeca2d597a7086a6
fbgemm_gpu_nightly_cpu_arm_clang_py3.13.whl
4.05 MB
sha256:792ad8f5c43ef161a4f1f0d852b004e787d45acf2deb358683060cc5f4de5d39
fbgemm_gpu_nightly_cpu_arm_clang_py3.9.whl
4.05 MB
sha256:eed5748cfd4e44b2e4df03635e83134f8e1a813730887d0afb4fba9cfb78fca1
fbgemm_gpu_nightly_cpu_arm_gcc_py3.10.whl
3.78 MB
sha256:5e10fcf739ab811118c87df965271f3bc644a372dde7f664765fd029cb294bf7
fbgemm_gpu_nightly_cpu_arm_gcc_py3.11.whl
3.78 MB
sha256:fda7579cdbd165eb22597df44de3566546acb566c00765d6eb41b7322f05dfd5
fbgemm_gpu_nightly_cpu_arm_gcc_py3.12.whl
3.78 MB
sha256:92a7b74ee89bf084b11c91865412c3b7450aa4acaeec26f0389abf5e266b82c8
fbgemm_gpu_nightly_cpu_arm_gcc_py3.13.whl
3.78 MB
sha256:f376b882b9a74544cb42b9726de56fa88b1cf467b3f8d97b82d543a57edc7d51
fbgemm_gpu_nightly_cpu_arm_gcc_py3.9.whl
3.78 MB
sha256:f34e67696a9cc78453cc746063bb053cc78e17397143138f2ad24622a6c58017
fbgemm_gpu_nightly_cpu_x86_clang_py3.10.whl
5.38 MB
sha256:bfa0d583b27b2a600726a660cb964a0a22deb81fa454afc6343aed9cbd939d3c
fbgemm_gpu_nightly_cpu_x86_clang_py3.11.whl
5.38 MB
sha256:3b1abaea3e27931730b584db7d7eda525168452f4bf8962dac9a9cd15c01bc47
fbgemm_gpu_nightly_cpu_x86_clang_py3.12.whl
5.38 MB
sha256:feb94038f6a71694ffc0473459bc01fa20cfa100a84d134ab3ad491eb282203c
fbgemm_gpu_nightly_cpu_x86_clang_py3.13.whl
5.38 MB
sha256:7e5283feab245a373313426ef9d451d885835c226a7b644e51d94cd66d3cc9f4
fbgemm_gpu_nightly_cpu_x86_clang_py3.9.whl
5.38 MB
sha256:2a5eeac01cb9e7b486c52cb3a37a165c3811ec2f1bd2bd5f441de595b4ab3a31
fbgemm_gpu_nightly_cpu_x86_gcc_py3.10.whl
4.93 MB
sha256:c3f74afec853179cd1e2d333cb5089b6bbdf83a19ad30e15c9bf18abbefa4bce
fbgemm_gpu_nightly_cpu_x86_gcc_py3.11.whl
4.93 MB
sha256:67b7c7d162de20c407b13dd6f8e35685d07ca09c1c66281d04f97afc9d07b4c6
fbgemm_gpu_nightly_cpu_x86_gcc_py3.12.whl
4.93 MB
sha256:d24b876fc47b1eda19e1e75185b011df2f55c24ff04f1ec0c440ee90cdaa35b8
fbgemm_gpu_nightly_cpu_x86_gcc_py3.13.whl
4.93 MB
sha256:320d879a310352cceafbb867b0e55d271bfdd1fb38e54a2d11c6199af9ccc72f
fbgemm_gpu_nightly_cpu_x86_gcc_py3.9.whl
4.93 MB
sha256:35ebca9c29f57ec1629562d5ec753e091a334147f9250d6349027d149ee61aed